Skip to main content

Transcriptograms: A Genome-Wide Gene Expression Analysis Method

  • Chapter
  • First Online:
Networks in Systems Biology

Part of the book series: Computational Biology ((COBO,volume 32))

Abstract

In this chapter, we discuss the Transcriptogram method for statistically analyzing differential gene expression in a genome-wide profile. This technique suggests a method to hierarchically interrogate the data and, subsequently, narrow down to gene level. We present the method, discuss its reproducibility and enhanced signal-to-noise ratio, and discuss its application in investigating time series data as in cell cycle, therapy gene target identification, lineage and tissue classification and as a powerful test to identify error and assess the quality of normalization procedures. We finally present the software ready for download and discuss the R-plugin for BioConductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550

    Article  Google Scholar 

  2. Dinu I et al (2007) Improving gene set analysis of microarray data by SAM-GS. BMC Inform 8:242

    Google Scholar 

  3. Evans C, Hardin J, Stoebel DM (2018) Brief Bioinform 19:776–792

    Article  Google Scholar 

  4. Rybarczyk-Filho JL et al (2011) Towards a genome-wide transcriptogram: the Saccharomyces cerevisiae case. Nucleic Acids Res 39:3005–3016

    Google Scholar 

  5. da Silva SRM, Perrone GC, Dinis JM, de Almeida RMC (2014) Reproducibility enhancement and differential expression of non predefined functional gene sets in human genome. BMC Genomics 15:1181

    Google Scholar 

  6. Szklarczyk D et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  Google Scholar 

  7. Jensen LJ et al (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res D412–D416

    Google Scholar 

  8. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  Google Scholar 

  9. de Almeida RMC et al (2016) Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Human Genomics 10:37

    Google Scholar 

  10. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 44–57

    Google Scholar 

  11. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  12. Hwang S et al (2011) Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring type 2 diabetes-associated mitochondrial DNA haplogroups. PLoS ONE 6:e22116

    Article  Google Scholar 

  13. Sanhudo LS, Dinis JM, Lenz G, de Almeida RMC (2019) Cell cycle genome wide profiles in reveals varying temporal gene expression correlations (submitted)

    Google Scholar 

  14. de Oliveira-Busatto LA et al (2020) The soybean transcriptogram allos a wide genome to single gene analysis that evinces time dependent drought response (submitted)

    Google Scholar 

  15. Miotto YE et al (2019) Identification of root transcriptional responses to shoot illumination in Arabidopsis thaliana. Plant Mol Biol 101:487–498

    Google Scholar 

  16. Cadavid IC, Guzman F, de Oliveira-Busatto Luisa A, Margis R (2020) Transxriptomic ando post-transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep (accepted for publication)

    Google Scholar 

  17. Ferrareze PAG et al (2017) Transcriptional analysis allows genome reannotation and reveals that Cryptococcus gatii CGII undergoes nutrient restriction during infection. Microorganisms 5:49

    Article  Google Scholar 

  18. Reis CF et al (2019) Systems biology-based analysis indicates global transcriptional impairment in lead-treated human neural progenitor cells. Front Genet 10:791

    Article  Google Scholar 

  19. Tu BP, Kudlicki A, Rowicka M, MacKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    Article  Google Scholar 

  20. Bacallao R, Clendenon SG, de Almeida RMC, Glazier JA (2018) Targeting cGMP-related phosphodiesterases to reduce cyst formation in cystic kidney disease, and related materials and methods. US2018/0078559 A1, 22 March 2018

    Google Scholar 

  21. Fry RC, Sambandan TG, Rha C (2003) DNA damage and stress transcripts in Saccharomyces cerevisiae Mutant sgs1. Mech Ageing Dev 124:839–846

    Google Scholar 

  22. Morais DAA, e Almeida RMC, Dalmolin RJS (2019) Transcriptogramer: an R/bioconductor package for transcriptional analysis based on canonical protein-protein interaction data. Bioinformatics 35:2875–2876

    Google Scholar 

  23. Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  Google Scholar 

  24. Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13):1600–1607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita M. C. de Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Almeida, R.M.C., de Souza, L.L.S., Morais, D., Dalmolin, R.J.S. (2020). Transcriptograms: A Genome-Wide Gene Expression Analysis Method. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics