Skip to main content

Functional Gene Networks and Their Applications

  • Chapter
  • First Online:
Networks in Systems Biology

Part of the book series: Computational Biology ((COBO,volume 32))

  • 941 Accesses

Abstract

One essential goal in functional genomics is to understand the functions and functional interactions of genes. The functional interaction between genes can happen in many ways and at different molecular levels, including co-expression, protein–protein interaction, shared sequence motif, etc. The functional interaction supported by such heterogeneous genomic data can be integrated into functional gene networks (FGNs) based on machine learning approaches. In FGNs, a node represents a gene and the edge indicates the probability that two genes co-function in the same pathway or biological process. By addressing the functional difference between isoforms generated from the same gene, recent efforts have focused on building FGNs at the finer isoform level, i.e., functional isoform networks (FINs). In this chapter, we will first present an introduction to FGNs and describe how heterogeneous genomic data can be integrated to build the network by machine learning approaches. We will then describe the refinement of FGNs from global networks to tissue-specific networks and from gene level to isoform level. Finally, we will describe and discuss the applications of FGNs in predicting gene functions and disease genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myers CL et al (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6(13):R114

    Article  MathSciNet  Google Scholar 

  2. Chen Y, Xu D (2004) Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Res 32(21):6414–6424

    Article  Google Scholar 

  3. Jiang T, Keating AE (2005) AVID: an integrative framework for discovering functional relationships among proteins. BMC Bioinfor 6(1):136

    Article  Google Scholar 

  4. Jansen R et al (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644):449–453

    Google Scholar 

  5. Lee I et al (2004) A probabilistic functional network of yeast genes. Science 306(5701):1555–1558

    Google Scholar 

  6. Troyanskaya OG et al (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci 100(14):8348–8353

    Article  Google Scholar 

  7. Myers CL, Troyanskaya OG (2007) Context-sensitive data integration and prediction of biological networks. Bioinformatics 23(17):2322–2330

    Article  Google Scholar 

  8. Pearl J (2014) Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier

    Google Scholar 

  9. Greene CS et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47(6):569

    Article  Google Scholar 

  10. Huttenhower C et al (2009) Exploring the human genome with functional maps. Genome Res 19(6):1093–1106

    Article  Google Scholar 

  11. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  Google Scholar 

  12. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  Google Scholar 

  13. Li H-D et al (2015) Functional networks of highest-connected splice isoforms: from the chromosome 17 human proteome project. J Proteome Res 14(9):3484–3491

    Article  Google Scholar 

  14. Li H-D et al (2019) BaiHui: cross-species brain-specific network built with hundreds of hand-curated datasets. Bioinformatics 35(14):2486–2488

    Article  Google Scholar 

  15. Franke L et al (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Human Gene 78(6):1011–1025

    Article  Google Scholar 

  16. D’Agati DV (2008) The spectrum of focal segmental glomerulosclerosis: new insights. Current Opin Nephrol Hyperten 17(3):271–281

    Google Scholar 

  17. Cai JJ, Petrov DA (2010) Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evolut 2:393–409

    Article  Google Scholar 

  18. Lage K et al (2008) A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci 105(52):20870–20875

    Article  Google Scholar 

  19. Winter EE et al (2004) Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res 14(1):54–61

    Article  Google Scholar 

  20. Lee Y-S et al (2018) Interpretation of an individual functional genomics experiment guided by massive public data. Nat Methods 15(12):1049–1052

    Article  Google Scholar 

  21. Portales-Casamar E et al (2010) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38(suppl_1):D105–D110

    Google Scholar 

  22. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550

    Article  Google Scholar 

  23. Barrett T et al (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995

    Article  Google Scholar 

  24. Forno LS (1988) The neuropathology of Parkinson’s disease. In: Progress in Parkinson research. Springer, pp 11–21

    Google Scholar 

  25. Kofler S et al (2005) Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 108(3):205–213

    Article  Google Scholar 

  26. Wong AK et al (2018) GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res 46(W1):W65–W70

    Google Scholar 

  27. Hu J et al (2010) Computational analysis of tissue-specific gene networks: application to murine retinal functional studies. Bioinformatics 26(18):2289–2297

    Article  Google Scholar 

  28. Guan Y et al (2010) Functional genomics complements quantitative genetics in identifying disease-gene associations. PLoS Computat Biol 6(11)

    Google Scholar 

  29. Bult CJ et al (2008) The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res 36(suppl_1):D724–D728

    Google Scholar 

  30. Smith CL et al (2005) The Mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6(1):R7

    Article  Google Scholar 

  31. Goh K-I et al (2007) The human disease network. Proc Natl Acad Sci 104(21):8685–8690

    Article  Google Scholar 

  32. Chao EC, Lipkin SM (2006) Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res 34(3):840–852

    Article  Google Scholar 

  33. Guan Y et al (2012) Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Computat Biol 8(9)

    Google Scholar 

  34. Smith CM et al (2007) The mouse gene expression database (GXD): 2007 update. Nucleic Acids Res 35(suppl_1):D618–D623

    Google Scholar 

  35. Su AI et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci 101(16):6062–6067

    Article  Google Scholar 

  36. Zhang W et al (2004) The functional landscape of mouse gene expression. J Biol 3(5):21

    Article  Google Scholar 

  37. Siddiqui AS et al (2005) A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad Sci 102(51):18485–18490

    Article  Google Scholar 

  38. Yao V et al (2018) An integrative tissue-network approach to identify and test human disease genes. Nat Biotechnol 36(11):1091–1099

    Article  Google Scholar 

  39. Liu JZ et al (2010) A versatile gene-based test for genome-wide association studies. Am J Human Genet 87(1):139–145

    Article  Google Scholar 

  40. Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17(2):100–107

    Article  Google Scholar 

  41. Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30(1):13–19

    Article  Google Scholar 

  42. Li H-D et al (2016) A network of splice isoforms for the mouse. Scienti Report 6:24507

    Article  Google Scholar 

  43. Maron O, Lozano-Pérez T (1998) A framework for multiple-instance learning. Adv Neural Infor Process Syst 570–576

    Google Scholar 

  44. Tseng Y-T et al (2015) IIIDB: a database for isoform-isoform interactions and isoform network modules. BMC Genom S10. Springer

    Google Scholar 

  45. Li HD et al (2014) Revisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidence. Proteomics 14(23–24):2709–2718

    Article  Google Scholar 

  46. Kandoi G, Dickerson JA (2019) Tissue-specific mouse mRNA isoform networks. Scienti Reports 9(1):1–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Dong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, HD., Guan, Y. (2020). Functional Gene Networks and Their Applications. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics