Skip to main content

Cellular Regulatory Network Modeling Applied to Breast Cancer

  • Chapter
  • First Online:
Networks in Systems Biology

Abstract

Cells in an organism interact with each other and with the environment through a complex set of signals, which triggers responses and activates cellular regulation mechanisms. Models obtained by computational mathematics for cellular signaling dynamics are used to understand factors and causes of deregulation of internal biological processes, which is a relevant knowledge in a disease such as cancer. Gene regulatory networks describe gene interactions and how these relationships control cellular processes such as growth and cell division, which relate this disease to the regulatory network. Despite its simplicity, Boolean networks may accurately model some biological phenomena, such as gene regulatory network dynamics. Indeed, several reports in the literature show that they are accurate enough to build models of regulatory networks of cell lines related to breast cancer. In this chapter, we present a methodology for building cellular regulatory networks based on the Boolean paradigm, which uses entropy as a criterion for selecting genes that are included in the network. The main objective is to understand dynamical behaviors related to situations that cause breast cancer and tumor lineages and to suggest experimentations to verify the outcome of interventions in networks, in order to support the identification of new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koyutürk M (2010) Algorithmic and analytical methods in network biology. Wiley Interdiscip Rev Syst Biol Med 2(3):277–292

    Article  MathSciNet  Google Scholar 

  2. Barillot E, Calzone L, Hupé P, Vert JP, Zinovyev A (2012) Computational systems biology of cancer. Mathematical & computational biology, 461 Pages. Chapman & Hall/CRC

    Google Scholar 

  3. Hunter L (1993) Molecular biology for computer scientists. Artificial intelligence and molecular biology, pp 1–46

    Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  5. Von der Heyde S, Bender C, Henjes F, Sonntag J, Korf U, Beissbarth T (2014) Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines. BMC Syst Biol 8(1):75

    Article  Google Scholar 

  6. Rodriguez A, Sosa D, Torres L, Molina B, Frias S, Mendoza L (2012) A Boolean network model of the FA/BRCA pathway. Bioinformatics 28(6):858–866

    Article  Google Scholar 

  7. Mohanty AK, Datta A, Venkatraj V (2013) A model for cancer tissue heterogeneity. IEEE Trans Biomed Eng 61(3):966–974

    Google Scholar 

  8. Akutsu T, Kuhara S, Maruyama O, Miyano S (2003) Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model. Theoret Comput Sci 298(1):235–251

    Article  MathSciNet  MATH  Google Scholar 

  9. Lähdesmäki H, Shmulevich I, Yli-Harja O (2003) On learning gene regulatory networks under the Boolean network model. Mach Learn 52(1–2):147–167

    Article  MATH  Google Scholar 

  10. Wittmann DM, Blöchl F, Trümbach D, Wurst W, Prakash N, Theis FJ (2009) Spatial analysis of expression patterns predicts genetic interactions at the mid-hindbrain boundary. PLoS Comput Biol 5(11):e1000569

    Article  Google Scholar 

  11. Carels N, Tilli TM, Tuszynski JA (2015) Optimization of combination chemotherapy based on the calculation of network entropy for protein-protein interactions in breast cancer cell lines. EPJ Nonlinear Biomed Phys 3(1):6

    Google Scholar 

  12. Krumsiek J, Pölsterl S, Wittmann DM, Theis FJ (2010) Odefy-from discrete to continuous models. BMC Bioinform 11(1):233

    Article  Google Scholar 

  13. Krumsiek J, Wittmann DM, Theis FJ (2011) From discrete to continuous gene regulation models–a tutorial using the Odefy toolbox. Applications of MATLAB in science and engineering, p 35

    Google Scholar 

  14. Cornelius SP, Kath WL, Motter AE (2013) Realistic control of network dynamics. Nature Commun 4(1):1–9

    Article  Google Scholar 

  15. Campbell C, Albert R (2014) Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Syst Biol 8(1):53

    Article  Google Scholar 

  16. Carels N, Tilli T, Tuszynski JA (2015) A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PloS One 10(1)

    Google Scholar 

  17. Kaderali L, Radde N (2008) Inferring gene regulatory networks from expression data. Computational intelligence in bioinformatics, pp 33–74. Springer, Berlin, Heidelberg

    Google Scholar 

  18. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780

    Article  Google Scholar 

  19. D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726

    Google Scholar 

  20. Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. http://ntrs.nasa.gov/search.jsp?R=20010002317

  21. Bansal M, Belcastro V, Ambesi‐Impiombato A, Di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1)

    Google Scholar 

  22. Ristevski B (2013) A survey of models for inference of gene regulatory networks. Nonlinear Anal Model Control 18(4):444–465

    Article  MathSciNet  MATH  Google Scholar 

  23. Trairatphisan P, Mizera A, Pang J, Tantar AA, Schneider J, Sauter T (2013) Recent development and biomedical applications of probabilistic Boolean networks. Cell Commun Signal 11(1):46

    Google Scholar 

  24. Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene networks. Neuron 26(3):567–580

    Article  Google Scholar 

  25. Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  Google Scholar 

  26. Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90(11):1778–1792

    Article  Google Scholar 

  27. Shmulevich I, Wei Z (2002) Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18(4):555–565

    Article  Google Scholar 

  28. Krumsiek J et al (2010) Odefy-from discrete to continuous models. BMC Bioinformatics 11(1):233

    Article  Google Scholar 

  29. Krumsiek J et al (2011) From discrete to continuous gene regulation models-a tutorial using the Odefy toolbox. INTECH Open Access Publisher

    Google Scholar 

  30. Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, Chaouiya C (2009) Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2):134–139  

    Google Scholar 

  31. Pujana MA, Han JDJ, Starita LM, Stevens KN, Tewari M, Ahn JS et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39(11):1338  

    Google Scholar 

  32. Zhu P, Liang J, Han J (2014) Gene perturbation and intervention in context-sensitive stochastic Boolean Networks. BMC Syst Biol 8(1):60

    Article  Google Scholar 

  33. Ruz GA, Timmermann T, Barrera J, Goles E (2014) Neutral space analysis for a Boolean network model of the fission yeast cell cycle network. Biol Res 47(1):64

    Article  Google Scholar 

  34. Martin S, Zhang Z, Martino A, Faulon JL (2007) Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23(7):866–874

    Article  Google Scholar 

  35. Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proceedings of Biocomputing ‘99, pp 17–28

    Google Scholar 

  36. Akutsu T, Miyano S, Kuhara S (2000) Algorithms for inferring qualitative models of biological networks. Biocomputing 1999:293–304

    Google Scholar 

  37. Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16(8):727–734

    Article  Google Scholar 

  38. Benso A, Di Carlo S, Politano G, Savino A, Vasciaveo A (2014) An extended gene protein/products boolean network model including post-transcriptional regulation. Theor Biol Med Model 11(1):S5

    Article  Google Scholar 

  39. Benso A et al (2016) BNToolkit – SysBio Group. https://www.sysbio.polito.it/bntoolk

  40. Wuensche A (2019) Tools for researching cellular automata, random Boolean networks, multi-value discrete dynamical networks, and beyond. Discrete Dynamics Lab. http://www.ddlab.com

  41. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7. BioMed Central

    Google Scholar 

  42. Califano A (2019). http://califano.c2b2.columbia.edu/aracne

  43. Karlebach G, Shamir R (2012) Constructing logical models of gene regulatory networks by integrating transcription factor–DNA interactions with expression data: an entropy-based approach. J Comput Biol 19(1):30–41

    Article  MathSciNet  Google Scholar 

  44. Karlebach G (2019) ModEnt a tool for reconstructing gene regulatory networks. http://acgt.cs.tau.ac.il/modent

  45. Instituto Nacional de Câncer (Brasil), Barbosa MBA (2008) Ações de enfermagem para o controle do câncer: uma proposta de integração ensino-serviço. INCA

    Google Scholar 

  46. Garg A, Mohanram K, Di Cara A, De Micheli G, Xenarios I (2009) Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25(12):i101–i109

    Article  Google Scholar 

  47. Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(04):593–646

    Article  MathSciNet  MATH  Google Scholar 

  48. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  49. Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20(7):869–876. Academic Press

    Google Scholar 

  50. Gomes RS (2012) O imperador de todos os males: uma biografia do câncer. In Mukherjee S (ed) Companhia das Letras, São Paulo, 634 pp

    Google Scholar 

  51. Ferreira LHO (2019) Modelagem de redes de regulação celular aplicada ao câncer de mama. Dissertação de Mestrado. Programa e Pós-graduação em Ciências Computacionais, Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro

    Google Scholar 

  52. Clarivate Analytics (2019) MetaCore. https://clarivate.com/products/metacore/

  53. Berestovsky N, Nakhleh L (2013) An evaluation of methods for inferring boolean networks from time-series data. PloS One 8(6)

    Google Scholar 

  54. Ribeiro AS, Kauffman SA (2007) Noisy attractors and ergodic sets in models of gene regulatory networks. J Theor Biol 247(4):743–755

    Article  MathSciNet  Google Scholar 

  55. Serra R, Villani M, Barbieri A, Kauffman SA, Colacci A (2010) On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J Theor Biol 265(2):185–193

    Article  MathSciNet  MATH  Google Scholar 

  56. Ferreira LHO, Castro MCS, Silva FA (2016) Modeling gene regulatory networks: a network simplification algorithm. AIP Conf Proc 1790(1):100003. AIP Publishing LLC

    Google Scholar 

  57. Mundus S, Müssel C, Schmid F, Lausser L, Blätte, TJ, Hopfensitz M et al (2015) Binarize: binarization of one-dimensional data

    Google Scholar 

  58. Hopfensitz M, Müssel C, Wawra C, Maucher M, Kuhl M, Neumann H, Kestler HA (2011) Multiscale binarization of gene expression data for reconstructing Boolean networks. IEEE/ACM Trans Comput Biol Bioinf 9(2):487–498

    Article  Google Scholar 

  59. Fišer P (2006) BOOM-II: the PLA minimizer. https://ddd.fit.cvut.cz/prj/BOOM

  60. Fišer P, Kubátová H (2004) Two-level boolean minimizer BOOM-II. In: Proceedings of 6th international workshop on Boolean problems (IWSBP’04), Freiberg, Germany, vol 23

    Google Scholar 

  61. Coudert O, Sasao T (2002) Two-level logic minimization. Logic synthesis and verification, pp 1–27. Springer, Boston, MA  

    Google Scholar 

  62. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  Google Scholar 

  63. Müssel C, Hopfensitz M, Zhou D, Kestler HA, Biere Hanson DT (2018) BoolNet: construction, simulation and analysis of Boolean networks. https://cran.r-project.org/web/packages/BoolNet/index.html

  64. Mizera A, Pang J, Yuan Q (2015) ASSA-PBN: an approximate steady-state analyser of probabilistic Boolean networks. In: International symposium on automated technology for verification and analysis. Springer, Cham, pp 214–220

    Google Scholar 

  65. Mizera A et al (2019) ASSA-PBN 3.0: a software tool for probabilistic Boolean networks (PBNs). https://satoss.uni.lu/software/ASSA-PBN

  66. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Alves Barbosa da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, L.H.O., de Castro, M.C.S., Conforte, A.J., Carels, N., da Silva, F.A.B. (2020). Cellular Regulatory Network Modeling Applied to Breast Cancer. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics