Skip to main content

Modelling Oxidative Stress Pathways

  • Chapter
  • First Online:
Networks in Systems Biology

Part of the book series: Computational Biology ((COBO,volume 32))

  • 834 Accesses

Abstract

Oxidative stress occurs as a result of an imbalance in reactive oxygen species (ROS) and antioxidant defences within the cells. It plays a key role in many physiological disease states, ranging from Alzheimer’s to cancer, as well as in infectious diseases; for instance, oxidative stress is significant during bacterial infection where macrophages and neutrophils subject pathogenic bacteria to oxidising environments or upon exposure to antibiotics. Therefore, it is vital to understand the systems biology of oxidative stress in order to effectively tackle the many issues that it is related to. In this chapter, computational approaches applied for understanding oxidative stress in bacteria and eukaryotes will be detailed together with the relevant biological advances. These approaches include construction of protein–protein interaction networks, logical and flux balance modelling techniques, machine learning applications and, lastly, high-throughput genomic methods such as next-generation sequencing, which generates data to be used in the aforementioned techniques. Finally, several case studies will be presented and discussed in the context of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  Google Scholar 

  2. Sies H (2018) On the history of oxidative stress: concept and some aspects of current development. Curr Opin Toxicol 7:122–126

    Article  Google Scholar 

  3. Poyton RO, Ball KA, Castello PR (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20:332–340

    Article  Google Scholar 

  4. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  Google Scholar 

  5. Siauciunaite R, Foulkes NS, Calabrò V, Vallone D (2019) Evolution shapes the gene expression response to oxidative stress. Int J Mol Sci 20:3040

    Article  Google Scholar 

  6. Scherz-Shouval R et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  Google Scholar 

  7. West AP et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  Google Scholar 

  8. Perez-Torres I, Guarner-Lans V, Rubio-Ruiz ME (2017) Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci 18

    Google Scholar 

  9. Lloret A, Fuchsberger T, Giraldo E, Vina J (2016) Reductive stress: a new concept in Alzheimer’s disease. Curr Alzheimer Res 13:206–211

    Article  Google Scholar 

  10. Jesmin J, Rashid MS, Jamil H, Hontecillas R, Bassaganya-Riera J (2010) Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension. BMC Med Genomics 3:45

    Article  Google Scholar 

  11. De Las Rivas J, Fontanillo C (2012) Protein–protein interaction networks: unraveling the wiring of molecular machines within the cell. Brief Funct Genomics 11:489–496

    Google Scholar 

  12. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807

    Article  Google Scholar 

  13. Stark C et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  Google Scholar 

  14. Hermjakob H et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455

    Article  Google Scholar 

  15. Launay G, Salza R, Multedo D, Thierry-Mieg N, Ricard-Blum S (2015) MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res 43:D321–D327

    Article  Google Scholar 

  16. Calderone A, Cesareni G (2012) Mentha: the interactome browser. EMBnet J 18:128

    Google Scholar 

  17. Alonso-López D et al (2016) APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res 44:W529–W535

    Article  Google Scholar 

  18. Szklarczyk D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  Google Scholar 

  19. Shoemaker BA, Panchenko AR (2007) Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLOS Comput Biol 3:e43

    Google Scholar 

  20. Dong S, Provart NJ (2018) Analyses of protein interaction networks using computational tools. Methods Mol Biol 1794:97–117

    Article  Google Scholar 

  21. Salwinski L et al (2009) Recurated protein interaction datasets. Nat Methods 6:860–861

    Article  Google Scholar 

  22. Keseler IM et al (2014) Curation accuracy of model organism databases. Database (Oxford) 2014:bau058

    Google Scholar 

  23. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol 171:727–758

    Google Scholar 

  24. Snider J et al (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol 11:848

    Article  Google Scholar 

  25. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  Google Scholar 

  26. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th python in science conference, pp 11–15

    Google Scholar 

  27. Kalaev M, Smoot M, Ideker T, Sharan R (2008) NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24:594–596

    Article  Google Scholar 

  28. Chiang SM, Schellhorn HE (2012) Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 525:161–169

    Article  Google Scholar 

  29. Kentner D, Sourjik V (2009) Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol Syst Biol 5:238

    Article  Google Scholar 

  30. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  Google Scholar 

  31. Dong S, Provart NJ (2018) Analyses of protein interaction networks using computational tools BT—two-hybrid systems: methods and protocols. In Oñate-Sánchez L (ed). Springer New York, pp 97–117. https://doi.org/10.1007/978-1-4939-7871-7_7

  32. Palluzzi F et al (2017) A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS ONE 12:e0185797–e0185797

    Article  Google Scholar 

  33. Chouchani ET et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435

    Article  Google Scholar 

  34. Feist AM et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  Google Scholar 

  35. Duarte NC et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104:1777–1782

    Google Scholar 

  36. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  Google Scholar 

  37. Mendoza SN, Olivier BG, Molenaar D, Teusink B (2019) A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol 20:158

    Article  Google Scholar 

  38. Karlsen E, Schulz C, Almaas E (2018) Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinform 19:467

    Article  Google Scholar 

  39. Heirendt L et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702

    Google Scholar 

  40. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  Google Scholar 

  41. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  Google Scholar 

  42. Hoppe A, Hoffmann S, Holzhütter H-G (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 1:23

    Article  Google Scholar 

  43. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci 97:5528 LP–5533

    Google Scholar 

  44. Guo W, Feng X (2016) OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PLoS ONE 11:e0154188

    Article  Google Scholar 

  45. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with cell net analyzer. BMC Syst Biol 1:2

    Article  Google Scholar 

  46. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74

    Article  Google Scholar 

  47. Wynn ML, Consul N, Merajver SD, Schnell S (2012) Logic-based models in systems biology: a predictive and parameter-free network analysis method. Integr Biol (Camb) 4:1323–1337

    Article  Google Scholar 

  48. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  MathSciNet  Google Scholar 

  49. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 5(Suppl 1):S85–S94

    Google Scholar 

  50. Bloomingdale P, Nguyen VA, Niu J, Mager DE (2018) Boolean network modeling in systems pharmacology. J Pharmacokinet Pharmacodyn 45:159–180

    Article  Google Scholar 

  51. Sridharan S, Layek R, Datta A, Venkatraj J (2012) Boolean modeling and fault diagnosis in oxidative stress response. BMC Genom 13(Suppl 6):S4–S4

    Article  Google Scholar 

  52. Nam D, Seo S, Kim S (2006) An efficient top-down search algorithm for learning Boolean networks of gene expression. Mach Learn 65:229–245

    Article  Google Scholar 

  53. Krumsiek J, Pölsterl S, Wittmann DM, Theis FJ (2010) Odefy—from discrete to continuous models. BMC Bioinform 11:233

    Article  Google Scholar 

  54. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    Article  Google Scholar 

  55. Ashtiani M et al (2018) A systematic survey of centrality measures for protein-protein interaction networks. BMC Syst Biol 12:80

    Article  Google Scholar 

  56. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239

    Article  Google Scholar 

  57. Batool K, Niazi MA (2014) Towards a methodology for validation of centrality measures in complex networks. PLoS ONE 9:e90283

    Article  Google Scholar 

  58. Bouttier J, Di Francesco P, Guitter E (2003) Geodesic distance in planar graphs. Nucl Phys B 663:535–567

    Article  MathSciNet  MATH  Google Scholar 

  59. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120

    Article  Google Scholar 

  60. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  61. Fernandes J et al (2016) 379—integration of multi-omics data reveal dynamic oxidative stress responses to manganese in human SH-SY5Y neuroblastoma cells. Free Radic Biol Med 100:S160

    Article  Google Scholar 

  62. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13:e1005457–e1005457

    Article  Google Scholar 

  63. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet. https://doi.org/10.1038/s41576-019-0150-2

    Article  Google Scholar 

  64. Yu M et al (2019) RNA-Seq analysis and functional characterization revealed lncRNA NONRATT007560.2 regulated cardiomyocytes oxidative stress and apoptosis induced by high glucose. J Cell Biochem 120:18278–18287

    Google Scholar 

  65. Damiani C et al (2019) Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLoS Comput Biol 15:e1006733–e1006733

    Article  Google Scholar 

  66. Alber AB, Paquet ER, Biserni M, Naef F, Suter DM (2018) Single live cell monitoring of protein turnover reveals intercellular variability and cell-cycle dependence of degradation rates. Mol Cell 71:1079–1091.e9

    Article  Google Scholar 

  67. Pajares M et al (2015) Redox control of protein degradation. Redox Biol 6:409–420

    Article  Google Scholar 

  68. Schwanhäusser B et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  Google Scholar 

  69. Go Y-M, Jones DP (2013) The redox proteome. J Biol Chem 288:26512–26520

    Article  Google Scholar 

  70. Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9

    Article  Google Scholar 

  71. Choi H-J et al (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113

    Article  Google Scholar 

  72. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49

    Article  Google Scholar 

  73. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    Article  Google Scholar 

  74. Zhang Z, Wu S, Stenoien DL, Paša-Tolić L (2014) High-throughput proteomics. Annu Rev. Anal Chem 7:427–454

    Article  Google Scholar 

  75. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55:182–196

    Article  Google Scholar 

  76. Lamond AI et al (2012) Advancing cell biology through proteomics in space and time (PROSPECTS). Mol Cell Proteomics 11:O112.017731

    Google Scholar 

  77. Holmes WE, Angel TE, Li KW, Hellerstein MK (2015) Chapter seven—dynamic proteomics: in vivo proteome-wide measurement of protein kinetics using metabolic labeling. In: Metallo CMBT-M (ed) Metabolic analysis using stable isotopes, vol 561. Academic Press, pp 219–276

    Google Scholar 

  78. Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Article  Google Scholar 

  79. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73:1896–1906

    Article  Google Scholar 

  80. Song P, Kwon Y, Joo J-Y, Kim D-G, Yoon JH (2019) Secretomics to discover regulators in diseases. Int J Mol Sci 20:3893

    Article  Google Scholar 

  81. Liao DF et al (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275:189–196

    Article  Google Scholar 

  82. Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta Proteins Proteomics 1834:2442–2453

    Article  Google Scholar 

  83. Hu C, Wang M, Han X (2017) Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol 12:946–955

    Article  Google Scholar 

  84. Halliwell B (2000) Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res 47:410–418

    Article  Google Scholar 

  85. Spickett CM, Pitt AR (2015) Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal 22:1646–1666

    Article  Google Scholar 

  86. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19:281–296

    Article  Google Scholar 

  87. Yang K, Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41:954–969

    Article  Google Scholar 

  88. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459

    Article  Google Scholar 

  89. Wang N et al (2016) Discovery of biomarkers for oxidative stress based on cellular metabolomics. Biomarkers 21:449–457

    Article  Google Scholar 

  90. Soga T et al (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776

    Article  Google Scholar 

  91. Lu Y et al (2019) Mass spectrometry-based metabolomics reveals occupational exposure to per- and polyfluoroalkyl substances relates to oxidative stress, fatty acid β-oxidation disorder, and kidney injury in a manufactory in China. Environ Sci Technol 53:9800–9809

    Article  Google Scholar 

  92. Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10:35

    Article  Google Scholar 

  93. Xu C, Jackson SA (2019) Machine learning and complex biological data. Genome Biol 20:76

    Article  Google Scholar 

  94. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ (2018) Next-generation machine learning for biological networks. Cell 173:1581–1592

    Article  Google Scholar 

  95. Sun M-A, Zhang Q, Wang Y, Ge W, Guo D (2016) Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features. BMC Bioinform 17:316

    Article  Google Scholar 

  96. Aledo JC, Cantón FR, Veredas FJ (2017) A machine learning approach for predicting methionine oxidation sites. BMC Bioinform 18:430

    Article  Google Scholar 

  97. Zampieri G, Vijayakumar S, Yaneske E, Angione C (2019) Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput Biol 15:e1007084–e1007084

    Article  Google Scholar 

  98. Cavill R, Jennen D, Kleinjans J, Briedé JJ (2015) Transcriptomic and metabolomic data integration. Brief Bioinform 17:891–901

    Article  Google Scholar 

  99. Sridhara V et al (2014) Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli. PLoS ONE 9:e114608

    Google Scholar 

  100. Bader GD et al (2001) BIND—the biomolecular interaction network database. Nucleic Acids Res 29:242–245

    Article  Google Scholar 

  101. Huttlin EL et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440

    Article  Google Scholar 

  102. Salwinski L et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–451

    Article  Google Scholar 

  103. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–541

    Article  Google Scholar 

  104. Breuer K et al (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:D1228–1233

    Article  Google Scholar 

  105. Turner B et al (2010) iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database (Oxford) 2010:baq023–baq023

    Google Scholar 

  106. Licata L et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–861

    Article  Google Scholar 

  107. Goll J et al (2008) MPIDB: the microbial protein interaction database. Bioinformatics 24:1743–1744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioly Kotta-Loizou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beaven, H., Kotta-Loizou, I. (2020). Modelling Oxidative Stress Pathways. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics