Skip to main content

Network Medicine: Methods and Applications

  • Chapter
  • First Online:
Networks in Systems Biology

Part of the book series: Computational Biology ((COBO,volume 32))

  • 892 Accesses

Abstract

The structure and function of biological systems are determined by a complex network of interactions among cell components. Network medicine offers a toolset for us to systematically explore perturbations in biological networks and to understand how they can spread and affect other cellular processes. In this way, we can have mechanistic insights underlying diseases and phenotypes, evaluate gene function in the context of their molecular interactions, and identify molecular relationships among apparently distinct phenotypes. These tools have also enabled the interpretation of heterogeneity among biological samples, identification of drug targets and drug repurposing as well as biomarker discovery. As our ability to profile biological samples increases, these network-based approaches are fundamental for data integration across the genomic, transcriptomic, and proteomic sciences. Here, we review and discuss the recent advances in network medicine, exploring the different types of biological networks, several methods, and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D et al (2018) Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563(7732):579–583

    Article  Google Scholar 

  2. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    Article  Google Scholar 

  3. Reka A, Jeong H, Barabási A-L, Albert R, Jeong H, Barabási A-L (2000) Error and Attack Tolerance of Complex Networks. Nature 406:378–381

    Article  Google Scholar 

  4. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

    Google Scholar 

  5. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L, The large-scale organization of metabolic networks. Nature

    Google Scholar 

  6. Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121–1122

    Google Scholar 

  7. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Google Scholar 

  8. Vidal M, Cusick ME, Barabasi A-L (2011) Interactome networks and human disease. Cell 144(6):986–998

    Article  Google Scholar 

  9. Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, Bian W, et al (2019) A reference map of the human protein interactome. bioRxiv 605451.

    Google Scholar 

  10. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature [Internet] 545(7655):505–509

    Article  Google Scholar 

  11. Das J, Yu H (2012) HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 6

    Google Scholar 

  12. Alonso-López D, Campos-Laborie FJ, Gutiérrez MA, Lambourne L, Calderwood MA, Vidal M et al (2019) APID database: redefining protein-protein interaction experimental evidences and binary interactomes. Database (i):1–8

    Google Scholar 

  13. Luck K, Sheynkman GM, Zhang I, Vidal M (2017) Proteome-scale human interactomics. Trends Biochem Sci 42(5):342–354

    Article  Google Scholar 

  14. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature [Internet] 489(7414):91–100

    Article  Google Scholar 

  15. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell [Internet] 150(6):1274–1286

    Article  Google Scholar 

  16. Wang YXR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol [Internet] 362:53–61

    Article  MATH  Google Scholar 

  17. Mo ML, Palsson BØ (2009) Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol [Internet] 27(1):37–44

    Google Scholar 

  18. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science (80-) [Internet] 353(6306):aaf1420–aaf1420

    Google Scholar 

  19. Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C (2013) Genetic interaction networks: toward an Understanding of Heritability. Annu Rev Genomics Hum Genet 14(1):111–133

    Article  Google Scholar 

  20. Boucher B, Jenna S (2013) Genetic interaction networks: better understand to better predict. Front Genet 4:1–16

    Google Scholar 

  21. Ahmed H, Howton TC, Sun Y, Weinberger N, Belkhadir Y, Mukhtar MS (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312

    Google Scholar 

  22. Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM et al (2007) Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104(18):7606–7611

    Google Scholar 

  23. de Chassey B, Navratil V, Tafforeau L, Hiet MS, Aublin-Gex A, Agaugué S et al (2008) Hepatitis C virus infection protein network. Mol Syst Biol 4:230

    Article  Google Scholar 

  24. Uetz P, Dong Y-A, Zeretzke C, Atzler C, Baiker A, Berger B et al (2006) Herpesviral protein networks and their interaction with the human proteome. Science [Internet] 311(5758):239–242

    Google Scholar 

  25. Shapira SD, Gat-Viks I, Shum BO V, Dricot A, de Grace MM, Wu L et al (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7):1255–1267

    Google Scholar 

  26. Jäger S, Gulbahce N, Cimermancic P, Kane J, He N, Chou S et al (2011) Purification and characterization of HIV-human protein complexes. Methods 53(1):13–19

    Google Scholar 

  27. Mendez-Rios J, Uetz P (2010) Global approaches to study protein-protein interactions among viruses and hosts. Future Microbiol 5(2):289–301

    Google Scholar 

  28. Penn BH, Netter Z, Johnson JR, Von Dollen J, Jang GM, Johnson T et al (2018) An Mtb-human protein-protein interaction map identifies a switch between host antiviral and antibacterial responses. Mol Cell 71(4):637–648.e5

    Google Scholar 

  29. Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT (2015) Integrated inference and evaluation of host–fungi interaction networks. Front Microbiol 4:6

    Google Scholar 

  30. Cuesta-Astroz Y, Santos A, Oliveira G, Jensen LJ (2019) Analysis of predicted host–parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism. Front Immunol 13:10

    Google Scholar 

  31. Aditya R, Mayil K, Thomas J, Gopalakrishnan B (2010) Cerebral malaria: insights from host-parasite protein-protein interactions. Malar J 9:1–7

    Article  Google Scholar 

  32. Wuchty S (2011) Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. Borrmann S (ed). PLoS One 6(11):e26960

    Google Scholar 

  33. Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM (2013) Using networks to measure similarity between genes: Association index selection. Nat Methods 10(12):1169–1176

    Article  Google Scholar 

  34. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810

    Google Scholar 

  35. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(88):1–13

    Google Scholar 

  36. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(SUPPL. 1):302–310

    Article  Google Scholar 

  37. Cowen L, Ideker T, Raphael BJ, Sharan R (2017) Network propagation: a universal amplifier of genetic associations. Nat Rev Genet 18(9):551–562

    Article  Google Scholar 

  38. Cao M, Zhang H, Park J, Daniels NM, Crovella ME, Cowen LJ et al (2013) Going the distance for protein function prediction: a new distance metric for protein interaction networks. PLoS ONE 8(10):1–12

    Google Scholar 

  39. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(SUPPL. 2):214–220

    Google Scholar 

  40. Nelson W, Zitnik M, Wang B, Leskovec J, Goldenberg A, Sharan R (2019) To embed or not: Network embedding as a paradigm in computational biology. Front Genet 10:1–11

    Article  Google Scholar 

  41. Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14):i190–i198

    Article  Google Scholar 

  42. Sharma A, Menche J, Chris Huang C, Ort T, Zhou X, Kitsak M et al (2014) A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet 24(11):3005–3020

    Article  Google Scholar 

  43. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J et al (2015) Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science [Internet] 347(6224):1257601

    Google Scholar 

  44. Guney E, Oliva B (2012) Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PLoS One 7(9)

    Google Scholar 

  45. Yin T, Chen S, Wu X, Tian W (2017) GenePANDA-a novel network-based gene prioritizing tool for complex diseases. Sci Rep 7:1–10

    Article  Google Scholar 

  46. Köhler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958

    Article  Google Scholar 

  47. Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol 18(3):507–522

    Google Scholar 

  48. Leiserson MDM, Vandin F, Wu H-T, Dobson JR, Eldridge J V, Thomas JL et al (2015) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet [Internet] 47(2):106–114

    Google Scholar 

  49. Ghiassian SD, Menche J, Barabási AL (2015) A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput Biol 11(4):1–21

    Article  Google Scholar 

  50. Croft DP, Madden JR, Franks DW, James R (2011) Hypothesis testing in animal social networks. Trends Ecol Evol 26(10):502–507

    Article  Google Scholar 

  51. Iorio F, Bernardo-Faura M, Gobbi A, Cokelaer T, Jurman G, Saez-Rodriguez J (2016) Efficient randomization of biological networks while preserving functional characterization of individual nodes. BMC Bioinfor 17(1):542

    Google Scholar 

  52. Farine DR (2017) A guide to null models for animal social network analysis. Methods Ecol Evol 8(10):1309–1320

    Article  Google Scholar 

  53. Hill A, Gleim S, Kiefer F, Sigoillot F, Loureiro J, Jenkins J et al (2019) Benchmarking network algorithms for contextualizing genes of interest. PLoS Comput Biol 15(12):1–14

    Article  Google Scholar 

  54. Choobdar S, Ahsen ME, Crawford J, Tomasoni M, Fang T, Lamparter D et al (2019) Assessment of network module identification across complex diseases. Nat Methods 16(9):843–852

    Google Scholar 

  55. Huang JK, Carlin DE, Yu MK, Zhang W, Kreisberg JF, Tamayo P et al (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst. 6(4):484-495.e5

    Article  Google Scholar 

  56. Caniza H, Romero AE, Paccanaro A (2015) A network medicine approach to quantify distance between hereditary disease modules on the interactome. Sci Rep 5:1–10

    Google Scholar 

  57. Cáceres JJ, Paccanaro A (2019) Disease gene prediction for molecularly uncharacterized diseases. PLoS Comput Biol 15(7):1–14

    Article  Google Scholar 

  58. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690

    Google Scholar 

  59. Fotouhi B, Momeni N, Riolo MA, Buckeridge DL (2018) Statistical methods for constructing disease comorbidity networks from longitudinal inpatient data. Appl Netw Sci 3(1)

    Google Scholar 

  60. Hidalgo CA, Blumm N, Barabási AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5(4)

    Google Scholar 

  61. Chmiel A, Klimek P, Thurner S. Spreading of diseases through comorbidity networks across life and gender. New J Phys 16(11):115013

    Google Scholar 

  62. Kalgotra P, Sharda R, Croff JM (2017) Examining health disparities by gender: A multimorbidity network analysis of electronic medical record. Int J Med Inform 108:22–28

    Article  Google Scholar 

  63. Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H et al (2014) Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat Commun 5:1–10

    Google Scholar 

  64. Beck MK, Jensen AB, Nielsen AB, Perner A, Moseley PL, Brunak S (2016) Diagnosis trajectories of prior multi-morbidity predict sepsis mortality. Sci Rep 6:1–9

    Article  Google Scholar 

  65. Giannoula A, Gutierrez-Sacristán A, Bravo Á, Sanz F, Furlong LI (2018) Identifying temporal patterns in patient disease trajectories using dynamic time warping: a population-based study. Sci Rep 8(1):1–14

    Google Scholar 

  66. Jeong E, Ko K, Oh S, Han HW (2017) Network-based analysis of diagnosis progression patterns using claims data. Sci Rep 7(1):1–12

    Article  Google Scholar 

  67. Zhou X, Menche J, Barabási A-L, Sharma A, Zhou X (2914) Human symptoms–disease network. Nat Commun 5

    Google Scholar 

  68. Dozmorov MG (2018) Disease classification: from phenotypic similarity to integrative genomics and beyond. Brief Bioinform 1–12

    Google Scholar 

  69. Loscalzo J, Barabási A-L, Silverman EK (2017) Network medicine. Harvard University Press

    Google Scholar 

  70. Caldera M, Müller F, Kaltenbrunner I, Licciardello MP, Lardeau CH, Kubicek S et al (2019) Mapping the perturbome network of cellular perturbations. Nat Commun [Internet] 10(1)

    Google Scholar 

  71. Wang RS, Loscalzo J (2016) Illuminating drug action by network integration of disease genes: a case study of myocardial infarction. Mol Biosyst 12(5):1653–1666

    Article  Google Scholar 

  72. Guney E, Menche J, Vidal M, Barabási A-L (2016) Network-based in silico drug efficacy screening. Nat Commun 7(1):10331

    Google Scholar 

  73. Aguirre-Plans J, Piñero J, Menche J, Sanz F, Furlong LI, Schmidt HHHW et al (2018) Targeting comorbid diseases via network endopharmacology. Pharmaceuticals [Internet] 11(61)

    Google Scholar 

  74. do Valle ÍF, Menichetti G, Simonetti G, Bruno S, Zironi I, Durso DF et al (2018) Network integration of multi-tumour omics data suggests novel targeting strategies. Nat Commun [Internet] 9(1):4514

    Google Scholar 

  75. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL et al (2018) Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 9(1):1–12

    Article  Google Scholar 

  76. Cheng F, Kovács IA, Barabási A-L (2019) Network-based prediction of drug combinations. Nat Commun 10(1):1197

    Article  Google Scholar 

  77. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13):i457–i466

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Alberto Paccanaro for his valuable inputs.

Funding

HIN is supported by CNPq (313662/2017-7) and the São Paulo Research Foundation (FAPESP; grants 2018/14933-2, 2018/21934-5, and 2013/08216-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder I. Nakaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

do Valle, I.F., Nakaya, H.I. (2020). Network Medicine: Methods and Applications. In: da Silva, F.A.B., Carels, N., Trindade dos Santos, M., Lopes, F.J.P. (eds) Networks in Systems Biology. Computational Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-51862-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51862-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51861-5

  • Online ISBN: 978-3-030-51862-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics