Skip to main content

Digital Image Restoration Using Modified Richardson-Lucy Deconvolution Algorithm

  • Conference paper
  • First Online:
Image Processing and Capsule Networks (ICIPCN 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1200))

Included in the following conference series:

Abstract

Since the Surveillance camera came into the market, the advanced digital image processing is getting more research importance. One of the major issues of digital photographing is motion and image blur. This can be occurring when the camera is in motion, the shape of the blurring is constant, but only the spatial extent is varying. Here, a novel algorithm is proposed for deconvoluting the image samples in the filtering process. Moreover, the proposed algorithm is successfully useful for compressed domain operations such as downsampling, translation, and filtering, etc. The recommended deconvolution algorithm produces the approximated output images that are perceptually closer to the actual image with reduced computational complexity. In this paper, the proposed multiplier less convolution algorithm is employed in the Richardson-Lucy filter for the Deblurring analysis. Also, this proposed method was compared with the existing techniques and stated that the novel multiplier less deconvolution algorithm provides better performance in terms of PSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch, M., Zhu, F., Delp, E.J.: Spatial texture models for video compression. In: IEEE International Conference on Image Processing, TX, San Antonio, pp. I:93–I:96 (2007)

    Google Scholar 

  2. Assuncao, P.A.A., Ghanbari, M.: Transcoding of MPEG-2 video in the frequency domain. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, vol. 4, pp. 2633–2636 (1997)

    Google Scholar 

  3. Bhasharan, V., Konstantinides, K., Beretta, G.: Text and image sharpening of scanned images in the JPEG domain. In: Proceedings of International Conference on Image Processing, Santa Barbara, CA, vol. 2, pp. 326–329 (1997)

    Google Scholar 

  4. Chang, S.F., Messerschmitt, D.G.: A new approach to decoding and compositing motion-compensated DCT-based images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, vol. 5, pp. 421–424 (1993)

    Google Scholar 

  5. Chang, S.-F., Messerschmitt, D.G.: Manipulation and compositing of MC-DCT compressed video. IEEE J. Sel. Areas Commun. 13(1), 1–11 (1995)

    Article  Google Scholar 

  6. Kresch, R., Merhav, N.: Fast DCT domain filtering using the DCT and the DST. IEEE Trans. Image Process. 8(6), 821–833 (1999)

    Article  Google Scholar 

  7. Sanchez, V., Garcia, P., Peinado, A.M., Segura, J.C., Rubio, A.J.: Diagonalizing properties of the discrete cosine transforms. IEEE Trans. Sig. Process. 43(11), 2631–2641 (1995)

    Article  Google Scholar 

  8. Lee, J.B., Lee, B.G.: Transform domain filtering based on pipelining structure. IEEE Trans. Sig. Process. 40(8), 2061–2064 (1992)

    Article  Google Scholar 

  9. Cai, J., Xu, W., Yang, Y.: Large scale 2D spectral compressed sensing in continuous domain. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, pp. 5905–5909 (2017)

    Google Scholar 

  10. Raghavan, V., Prabhu, K.M.M., Sommen, P.C.W.: An analysis of real-Fourier domain-based adaptive algorithms implemented with the Hartley transform using cosine-sine symmetries. IEEE Trans. Sig. Process. 53(2), 622–629 (2005)

    Article  MathSciNet  Google Scholar 

  11. Julio, R.O., Soares, L.B., Costa, E.A.C., Bampi, S.: Energy-efficient Gaussian filter for image processing using approximate adder circuits. In: IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Cairo, pp. 450–453 (2015)

    Google Scholar 

  12. Smith, B.C., Rowe, L.A.: Algorithms for manipulating compressed images. IEEE Comput. Graph. Appl. 13(5), 34–42 (1993)

    Article  Google Scholar 

  13. Merhav, N., Kresch, R.: Approximate convolution using DCT coefficient multipliers. IEEE Trans. Circ. Syst. Video Technol. 8(4), 378–385 (1998)

    Article  Google Scholar 

  14. Natarajan, B.K., Vasudev, B.: A fast approximate algorithm for scaling down digital images in the DCT domain. In: Proceedings of International Conference on Image Processing, Washington, DC, USA, vol. 2, pp. 241–243 (1995)

    Google Scholar 

  15. Rubia, Jency, Kumar, Sathish: Design and analysis of low power fixed-width multiplier using reduced precision redundancy block. IOSR J. VLSI Sig. Process. 9(6), 01–08 (2019)

    Google Scholar 

  16. Jency Rubia, J., Sathish Kumar, G.A.: A survey paper on modern technologies in fixed-width multiplier. In: 4th IEEE International Conference on Signal Processing, Communications and Networking, pp. 1–6 (2017)

    Google Scholar 

  17. Merhav, N.: Multiplication-free approximate algorithms for compressed-domain linear operations on images. IEEE Trans. Image Process. 8(2), 247–254 (1999)

    Article  Google Scholar 

  18. Merhav, N., Bhaskaran, V.: Fast algorithms for DCT-domain image downsampling and for inverse motion compensation. IEEE Trans. Circ. Syst. Video Technol. 7(3), 468–476 (1997)

    Article  Google Scholar 

  19. Jency Rubia, J., Sathish Kumar, G.A.: FIR filter design using floating point radix 4 algorithm. Int. J. Electr. Eng. 1–13 (2019). https://doi.org/10.1177/0020720919891064

  20. Jency Rubia, J., Sathish Kumar, G.A.: FIR filter design using floating point column bypassing technique. Int. J. Recent Technol. Eng. (IJRTE) 8(2S4), 409–413 (2019)

    Google Scholar 

  21. Wang, Y., Feng, H., Xu, Z., Li, Q., Dai, C.: An improved Richardson–Lucy algorithm based on local prior. Opt. Laser Technol. 42(5), 845–849 (2010)

    Article  Google Scholar 

  22. Wu, J., Chang, C., Chen, C.: An improved Richardson-Lucy algorithm for single image deblurring using local extrema filtering. In: International Symposium on Intelligent Signal Processing and Communications Systems, Taipei, pp. 27–32 (2012)

    Google Scholar 

  23. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)

    Article  Google Scholar 

  24. Kou, W., Fjallbrant, T.: A direct computation of DCT coefficients for a signal block taken from two adjacent blocks. IEEE Trans. Sig. Process. 39(7), 1692–1695 (1991)

    Article  Google Scholar 

  25. Liu, D., Chen, X., Liu, X.: An improved Richardson-Lucy algorithm for star image deblurring. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, pp. 1–5 (2019)

    Google Scholar 

  26. Jency Rubia, J., Sathish Kumar, G.A.: A high speed fixed-width floating point multiplier using RLNS algorithm. Int. J. Electr. Eng. Educ. 1–9 (2018). https://doi.org/10.1177/0020720918813836

  27. Yamauchi, H., Somha, W.: A filter design for blind deconvolution to decouple unknown RDF/RTN factors from complexly coupled SRAM margin variations. In: IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, pp. 247–250 (2016)

    Google Scholar 

  28. Yamauchi, H., Somha, W.: A technique to solve issue of Richardson-Lucy deconvolution for analyzing RTN effects on SRAM margin variation. In: IEEE 5th Latin American Symposium on Circuits and Systems, Santiago, pp. 1–4 (2014)

    Google Scholar 

  29. Zha, Y., Huang, Y., Yang, J., Wu, J., Zhang, Y., Yang, H.: An improved Richardson-Lucy algorithm for radar angular super-resolution. In: IEEE Radar Conference, Cincinnati, pp. 0406–0410 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jency Rubia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jency Rubia, J., Babitha Lincy, R. (2021). Digital Image Restoration Using Modified Richardson-Lucy Deconvolution Algorithm. In: Chen, J.IZ., Tavares, J.M.R.S., Shakya, S., Iliyasu, A.M. (eds) Image Processing and Capsule Networks. ICIPCN 2020. Advances in Intelligent Systems and Computing, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-51859-2_10

Download citation

Publish with us

Policies and ethics