Skip to main content

THz Propagation and Related Topics

  • Chapter
  • First Online:
Introduction to Terahertz Electronics
  • 1159 Accesses

Abstract

THz waves generated by signal sources (topic in Chap. 2) will be detected by detectors (topic in Chap. 3) after propagating through a medium. In this chapter, the propagation of THz waves and related topics will be discussed. A popular propagation method in the lower frequency ranges, such as RF and microwave, is through coaxial cables. However, the loss will grow with frequency, and it will reach a point where it become prohibitively large for practical uses. Beyond such a point, various types of waveguides, most notably the metallic rectangular waveguides, will be better suited for the propagation of electromagnetic waves. Nevertheless, they also have their own loss-dominated frequency upper limit. The favorable solution beyond this limit would be the propagation through free space, guided by optical components such as lenses and mirrors. The THz band is situated across the region that prefers the propagation through the waveguides or free space. The two propagation schemes will be the main topics in this chapter and described as individual sections. In the case of propagation through free space, usually in the form of Gaussian beam, a device that converts guided waves (or AC signal) to radiated electromagnetic waves (and vice versa) will be needed. The device, or antenna, will be also treated in this chapter as a separate section with focus on its THz application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Goldsmith, Quasioptical Systems (IEEE Press, Piscataway, NJ, 1998)

    Book  Google Scholar 

  2. O. Svelto, D.C. Hanna, Principles of Lasers, 5th edn. (Springer, Berlin, 1998)

    Book  Google Scholar 

  3. A.E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986)

    Google Scholar 

  4. H.T. Yura, S.G. Hanson, Optical beam wave propagation through complex optical systems. J. Opt. Soc. Am. 4(10), 1931–1948 (1987)

    Article  Google Scholar 

  5. C.A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, Hoboken, NJ, 2016)

    Google Scholar 

  6. W.L. Stutzman, G.A. Thiele, Antenna Theory and Design (John Wiley & Sons, Hoboken, NJ, 2012)

    Google Scholar 

  7. G.M. Rebeiz, Millimeter-wave and terahertz integrated circuit antennas. Proc. IEEE 80(11), 1748–1770 (1992)

    Article  Google Scholar 

  8. I. A. P. Society, IEEE Standard for Definitions of Terms for Antennas (IEEE, New York, 1993). 9780738189277, https://books.google.com/books?id=dc17swEACAAJ

    Google Scholar 

  9. J.S. McLean, A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas Propag. 44(5), 672 (1996). https://doi.org/10.1109/8.496253

    Article  Google Scholar 

  10. R.C. Hansen, Fundamental limitations in antennas. Proc. IEEE 69(2), 170–182 (1981). https://doi.org/10.1109/PROC.1981.11950

    Article  Google Scholar 

  11. Y.P. Zhang, M. Sun, L.H. Guo, On-chip antennas for 60-GHz radios in silicon technology. IEEE Trans. Electron Devices 52(7), 1664–1668 (2005). https://doi.org/10.1109/TED.2005.850628

    Article  Google Scholar 

  12. S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, H.-R. Chuang, A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-μm CMOS technology. IEEE Electron Device Lett. 29(6), 625–627 (2008). https://doi.org/10.1109/LED.2008.920852

    Article  Google Scholar 

  13. F. Schuster et al., A broadband THz imager in a low-cost CMOS technology, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (2011), pp. 42–43. https://doi.org/10.1109/isscc.2011.5746211

  14. T. Tajima, H. Song, K. Ajito, M. Yaita, N. Kukutsu, 300-GHz step-profiled corrugated horn antennas integrated in LTCC. IEEE Trans. Antennas Propag. 62(11), 5437–5444 (2014). https://doi.org/10.1109/TAP.2014.2350520

    Article  MathSciNet  MATH  Google Scholar 

  15. H.M. Cheema, A. Shamim, The last barrier: On-chip antennas. IEEE Microw. Mag. 14(1), 79–91 (2013). https://doi.org/10.1109/MMM.2012.2226542

    Article  Google Scholar 

  16. K.O. Kenneth et al., On-chip antennas in silicon ICs and their application. IEEE Trans. Electron Devices 52(7), 1312–1323 (2005). https://doi.org/10.1109/TED.2005.850668

    Article  Google Scholar 

  17. E. Ojefors, U.R. Pfeiffer, A 650GHz SiGe receiver front-end for terahertz imaging arrays, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (2010), pp. 430–431

    Google Scholar 

  18. U.R. Pfeiffer, E. Ojefors, A 600-GHz CMOS focal-plane array for terahertz imaging applications, in 34th European Solid-State Circuits Conference (2008), pp. 110–113

    Google Scholar 

  19. D. Yoon, J. Kim, J. Yun, M. Kaynak, B. Tillack, J.-S. Rieh, 300-GHz direct and heterodyne active imagers based on 0.13-μm SiGe HBT technology. IEEE Trans. Terahertz Sci. Technol. 7(5), 536–545 (2017)

    Article  Google Scholar 

  20. A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri, A 77-GHz phased-array transceiver with on-Chip antennas in silicon: Receiver and antennas. IEEE J. Solid State Circuits 41(12), 2795–2806 (2006). https://doi.org/10.1109/JSSC.2006.884811

    Article  Google Scholar 

  21. N.G. Alexopoulos, P.B. Katehi, D.B. Rutledge, Substrate optimization for integrated circuit antennas. IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983). https://doi.org/10.1109/TMTT.1983.1131544

    Article  Google Scholar 

  22. H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, M. Yaita, 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 62(3), 600–609 (2014)

    Article  Google Scholar 

  23. J. Kim et al., Three-dimensional terahertz tomography with transistor-based signal source and detector circuits operating near 300 GHz. IEEE Trans. Terahertz Sci. Technol. 8(5), 482–491 (2018). https://doi.org/10.1109/TTHZ.2018.2851542

    Article  Google Scholar 

  24. M. Asada, S. Suzuki, N. Kishimoto, Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47(6), 4375–4384 (2008). https://doi.org/10.1143/jjap.47.4375

    Article  Google Scholar 

  25. R. Han, E. Afshari, A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid State Circuits 48(12), 3090–3104 (2013). https://doi.org/10.1109/JSSC.2013.2272864

    Article  Google Scholar 

  26. Z. Hu, M. Kaynak, R. Han, High-power radiation at 1 THz in silicon: A fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid State Circuits 53(5), 1313–1327 (2018). https://doi.org/10.1109/JSSC.2017.2786682

    Article  Google Scholar 

  27. H.G. Booker, Slot aerials and their relation to complementary wire aerials (Babinet’s principle). J. Inst. Electric. Eng. IIIA Radiolocation 93(4), 620–626 (1946)

    Google Scholar 

  28. K. Carver, J. Mink, Microstrip antenna technology. IEEE Trans. Antennas Propag. 29(1), 2–24 (1981)

    Article  Google Scholar 

  29. E.O. Hammerstad, Equations for microstrip circuit design, in 1975 5th European Microwave Conference, (IEEE, New York, 1975), pp. 268–272

    Chapter  Google Scholar 

  30. D.R. Jackson, N.G. Alexopoulos, Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propag. 39(3), 407–410 (1991). https://doi.org/10.1109/8.76341

    Article  Google Scholar 

  31. E. Seok et al., Progress and challenges towards terahertz CMOS integrated circuits. IEEE J. Solid State Circuits 45(8), 1554–1564 (2010). https://doi.org/10.1109/JSSC.2010.2049793

    Article  Google Scholar 

  32. E. Ojefors, J. Grzyb, Y. Zhao, B. Heinemann, B. Tillack, U.R. Pfeiffer, A 820GHz SiGe chipset for terahertz active imaging applications, in IEEE International Solid-State Circuits Conference (2011), pp. 224–226

    Google Scholar 

  33. D. Yoon, K. Song, J. Kim, M. Kaynak, B. Tillack, J.-S. Rieh, A D-band active imager in a SiGe HBT technology. J. Infrared Millimeter Terahertz Waves 36(4), 335–349 (2015)

    Article  Google Scholar 

  34. E. Seok et al., A 410GHz CMOS push-push oscillator with an on-chip patch antenna, in IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, New York, 2008), pp. 472–629

    Google Scholar 

  35. R. Han et al., A 280-GHz Schottky diode detector in 130-nm digital CMOS. IEEE J. Solid State Circuits 46(11), 2602–2612 (2011). https://doi.org/10.1109/JSSC.2011.2165234

    Article  Google Scholar 

  36. S. Chai, S. Lim, S. Hong, THz detector with an antenna coupled stacked CMOS plasma-wave FET. IEEE Microw. Wirel. Compon. Lett. 24(12), 869–871 (2014). https://doi.org/10.1109/LMWC.2014.2353211

    Article  Google Scholar 

  37. C. Li, T. Chiu, 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans. Terahertz Sci. Technol. 7(3), 284–294 (2017). https://doi.org/10.1109/TTHZ.2017.2670234

    Article  Google Scholar 

  38. J.M. Edwards, G.M. Rebeiz, High-efficiency elliptical slot antennas with quartz superstrates for silicon RFICs. IEEE Trans. Antennas Propag. 60(11), 5010–5020 (2012). https://doi.org/10.1109/TAP.2012.2207353

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Choe, J. Jeong, Broadband THz CMOS on-chip antenna using stacked resonators, in 2017 IEEE International Symposium on Radio-Frequency Integration Technology (2017), pp. 208–210. https://doi.org/10.1109/RFIT.2017.8048251

  40. K.M. Lee, I.J. Lee, S. Jeon, M. Kim, J.S. You, 300 GHz InP rectangular cavity antenna, in 2015 IEEE International Symposium on Antennas and Propagation (2015), pp. 2105–2106. https://doi.org/10.1109/APS.2015.7305442

  41. V. Rumsey, Frequency independent antennas. IRE Int. Conven. Record 5, 114–118 (1957). https://doi.org/10.1109/IRECON.1957.1150565

    Article  Google Scholar 

  42. P.E. Mayes, Frequency-independent antennas and broad-band derivatives thereof. Proc. IEEE 80(1), 103–112 (1992). https://doi.org/10.1109/5.119570

    Article  Google Scholar 

  43. J. Dyson, The equiangular spiral antenna. IRE Trans. Antennas Propag. 7(2), 181–187 (1959)

    Article  Google Scholar 

  44. R. DuHamel, D. Isbell, Broadband logarithmically periodic antenna structures. IRE Int. Conven. Record 5, 119–128 (1957). https://doi.org/10.1109/IRECON.1957.1150566

    Article  Google Scholar 

  45. A.D. Semenov et al., Terahertz performance of integrated lens antennas with a hot-electron bolometer. IEEE Trans. Microw. Theory Tech. 55(2), 239–247 (2007). https://doi.org/10.1109/TMTT.2006.889153

    Article  MathSciNet  Google Scholar 

  46. S.-P. Han et al., Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Opt. Express 20(16), 18432–18439 (2012)

    Article  Google Scholar 

  47. S. Lepeshov et al., Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8 (2018)

    Google Scholar 

  48. S. Verghese, K.A. McIntosh, E.R. Brown, Highly tunable fiber-coupled photomixers with coherent terahertz output power. IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997). https://doi.org/10.1109/22.618428

    Article  Google Scholar 

  49. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, H.L. Hartnagel, Tunable CW-THz system with a log-periodic photoconductive emitter. Solid State Electron. 48(10–11), 2041–2045 (2004)

    Article  Google Scholar 

  50. S. Yang, M.R. Hashemi, C.W. Berry, M. Jarrahi, 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014). https://doi.org/10.1109/TTHZ.2014.2342505

    Article  Google Scholar 

  51. D.M. Pozar, Microwave Engineering (John Wiley & Sons, Hoboken, NJ, 2009)

    Google Scholar 

  52. R. Garg, I. Bahl, M. Bozzi, Microstrip Lines and Slotlines (Artech house, Boston, MA, 2013)

    Google Scholar 

  53. I.J. Bahl, D.K. Trivedi, A designer’s guide to microstrip line. Microwaves 16(5), 174–182 (1977)

    Google Scholar 

  54. R.A. Pucel, D.J. Masse, C.P. Hartwig, Losses in microstrip. IEEE Trans. Microw. Theory Tech. 16(6), 342–350 (1968). https://doi.org/10.1109/TMTT.1968.1126691

    Article  Google Scholar 

  55. L. Maloratsky, Passive RF and Microwave Integrated Circuits (Elsevier, Amsterdam, 2003)

    Google Scholar 

  56. L.J. van der Pauw, The radiation of electromagnetic power by microstrip configurations. IEEE Trans. Microw. Theory Tech. 25(9), 719–725 (1977). https://doi.org/10.1109/TMTT.1977.1129201

    Article  Google Scholar 

  57. C.P. Wen, Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans. Microw. Theory Tech. 17(12), 1087–1090 (1969). https://doi.org/10.1109/TMTT.1969.1127105

    Article  Google Scholar 

  58. A. Komijani, A. Hajimiri, A wideband 77-GHz, 17.5-dBm fully integrated power amplifier in silicon. IEEE J. Solid State Circuits 41(8), 1749–1756 (2006)

    Article  Google Scholar 

  59. G. Ghione, C. Naldi, Analytical formulas for coplanar lines in hybrid and monolithic MICs. Electron. Lett. 20(4), 179–181 (1984). https://doi.org/10.1049/el:19840120

    Article  Google Scholar 

  60. S.S. Gevorgian, Basic characteristics of two layered substrate coplanar waveguides. Electron. Lett. 30(15), 1236–1237 (1994). https://doi.org/10.1049/el:19940861

    Article  Google Scholar 

  61. S.B. Cohn, Slot line on a dielectric substrate. IEEE Trans. Microw. Theory Tech. 17(10), 768–778 (1969). https://doi.org/10.1109/TMTT.1969.1127058

    Article  Google Scholar 

  62. E.A. Mariani, C.P. Heinzman, J.P. Agrios, S.B. Cohn, Slot line characteristics. IEEE Trans. Microw. Theory Tech. 17(12), 1091–1096 (1969). https://doi.org/10.1109/TMTT.1969.1127106

    Article  Google Scholar 

  63. P. Toulios, R. Knox, Rectangular dielectric image lines for millimeter integrated circuits, in Western Electronic Show and Convention (1970), pp. 25–28

    Google Scholar 

  64. W.V. McLevige, T. Itoh, R. Mittra, New waveguide structures for millimeter-wave and optical integrated circuits. IEEE Trans. Microw. Theory Tech. 23(10), 788–794 (1975). https://doi.org/10.1109/TMTT.1975.1128684

    Article  Google Scholar 

  65. T. Itoh, R. Mittra, New waveguide structures for millimeter-wave integrated circuits, in IEEE-MTT-S International Microwave Symposium (1975), pp. 277–280. https://doi.org/10.1109/MWSYM.1975.1123359

  66. T. Itoh, Inverted strip dielectric waveguide for millimeter-wave integrated circuits. IEEE Trans. Microw. Theory Tech. 24(11), 821–827 (1976). https://doi.org/10.1109/TMTT.1976.1128967

    Article  Google Scholar 

  67. E.A.J. Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 48(7), 2071–2102 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01166.x

    Article  Google Scholar 

  68. P. Bhartia, I.J. Bahl, Millimeter Wave Engineering and Applications (Wiley, New York, 1984)

    Google Scholar 

  69. D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, Amsterdam, 2013)

    Google Scholar 

  70. S. Fukuda et al., A 12.5+12.5 Gb/s full-duplex plastic waveguide interconnect. IEEE J. Solid State Circuits 46(12), 3113–3125 (2011). https://doi.org/10.1109/JSSC.2011.2168870

    Article  Google Scholar 

  71. N.V. Thienen, W. Volkaerts, P. Reynaert, A multi-gigabit CPFSK polymer microwave fiber communication link in 40 nm CMOS. IEEE J. Solid State Circuits 51(8), 1952–1958 (2016). https://doi.org/10.1109/JSSC.2016.2580605

    Article  Google Scholar 

  72. M.V. Schneider, B. Glance, W.F. Bodtmann, Microwave and millimeter wave hybrid integrated circuits for radio systems. Bell Syst. Tech. J. 48(6), 1703–1726 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01147.x

    Article  Google Scholar 

  73. G.E. Ponchak, R.N. Simons, A new rectangular waveguide to coplanar waveguide transition, in IEEE MTT-S International Microwave Symposium Digest (1990), pp. 491–492. https://doi.org/10.1109/mwsym.1990.99626

  74. L.J. Lavedan, Design of waveguide-to-microstrip transitions specially suited to millimetre-wave applications. Electron. Lett. 13(20), 604–605 (1977). https://doi.org/10.1049/el:19770434

    Article  Google Scholar 

  75. J.V. Bellantoni, R.C. Compton, H.M. Levy, A new W-band coplanar waveguide test fixture, in IEEE MTT-S International Microwave Symposium Digest (1989), pp. 1203–1204. https://doi.org/10.1109/mwsym.1989.38940

  76. V.S. Mottonen, Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper. IEEE Microw. Wirel. Compon. Lett. 15(2), 119–121 (2005). https://doi.org/10.1109/LMWC.2004.842855

    Article  Google Scholar 

  77. C. Groppi, C.Y.D. d’Aubigny, A.W. Lichtenberger, C.M. Lyons, C.K. Walker, Broadband finline ortho-mode transducer for the 750–1150 GHz band, in Proc. 16th Int. Symp. Space Terahertz Technol. (2005), pp. 513–518

    Google Scholar 

  78. L.A. Samoska, An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans. Terahertz Sci. Technol. 1(1), 9–24 (2011). https://doi.org/10.1109/TTHZ.2011.2159558

    Article  Google Scholar 

  79. P. Kittara, P. Grimes, G. Yassin, S. Withington, K. Jacobs, S. Wulff, A 700-GHz SIS antipodal finline mixer fed by a Pickett-Potter horn-reflector antenna. IEEE Trans. Microw. Theory Tech. 52(10), 2352–2360 (2004). https://doi.org/10.1109/TMTT.2004.835976

    Article  Google Scholar 

  80. T.Q. Ho, Y.-C. Shih, Y.-C. Shih, Spectral-domain analysis of E-plane waveguide to microstrip transitions. IEEE Trans. Microw. Theory Tech. 37(2), 388–392 (1989). https://doi.org/10.1109/22.20065

    Article  Google Scholar 

  81. Y.-C. Leong, S. Weinreb, Full band waveguide-to-microstrip probe transitions, in IEEE MTT-S International Microwave Symposium Digest, vol. 4 (1999), pp. 1435–1438. https://doi.org/10.1109/MWSYM.1999.780219

  82. Y. Shih, T. Ton, L.Q. Bui, Waveguide-to-microstrip transitions for millimeter-wave applications, in IEEE MTT-S International Microwave Symposium Digest (1988), pp. 473–475. https://doi.org/10.1109/MWSYM.1988.22077

  83. L. Samoska, A. Peralta, H. Ming, M. Micovic, A. Schmitz, A 20 mW, 150 GHz InP HEMT MMIC power amplifier module. IEEE Microw. Wirel. Compon. Lett. 14(2), 56–58 (2004). https://doi.org/10.1109/LMWC.2003.822575

    Article  Google Scholar 

  84. P.H. Siegel, R.P. Smith, M.C. Graidis, S.C. Martin, 2.5-THz GaAs monolithic membrane-diode mixer. IEEE Trans. Microw. Theory Tech. 47(5), 596–604 (1999). https://doi.org/10.1109/22.763161

    Article  Google Scholar 

  85. K.M.K.H. Leong et al., A 340–380 GHz integrated CB-CPW-to-waveguide transition for sub millimeter-wave MMIC packaging. IEEE Microw. Wirel. Compon. Lett. 19(6), 413–415 (2009). https://doi.org/10.1109/LMWC.2009.2020043

    Article  Google Scholar 

  86. W. Choe, J. Jeong, A broadband THz on-chip transition using a dipole antenna with integrated balun. Electronics 7(10), 236 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rieh, JS. (2021). THz Propagation and Related Topics. In: Introduction to Terahertz Electronics. Springer, Cham. https://doi.org/10.1007/978-3-030-51842-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51842-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51841-7

  • Online ISBN: 978-3-030-51842-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics