Skip to main content

Linear Kinetics

  • Chapter
  • First Online:
Fundamentals of Biomechanics
  • 4339 Accesses

Abstract

In the previous chapter, we learned that kinematic principles and measurements of motion could be used to provide knowledge for improving human movement. This chapter will summarize the important laws of kinetics that show how forces overcome inertia and how other forces create human motion. Studying the causes of linear motion is the branch of mechanics known as linear kinetics. Identifying the causes of motion may be the most useful kind of mechanical knowledge for determining what potential changes could be used to improve human movement. The biomechanical principles that will be discussed in this chapter are Inertia, Force–Time, and Segmental Interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamson, G. T., & Whitney, R. J. (1971). Critical appraisal of jumping as a measure of human power. In J. Vredenbregt & J. Wartenweiler (Eds.), Biomechanics II (pp. 208–211). Baltimore: University Park Press.

    Google Scholar 

  • Barlow, D. A. (1971). Relation between power and selected variables in the vertical jump. In J. M. Cooper (Ed.), Selected topics on biomechanics (pp. 233–241). Chicago: Athletic Institute.

    Google Scholar 

  • Barr, A. E., & Barbe, M. F. (2002). Pathophysiological tissue changes associated with repetitive movement: A review of the evidence. Physical Therapy, 82, 173–187.

    Article  PubMed  Google Scholar 

  • Blackard, D. O., et al. (1999). Use of EMG analysis in challenging kinetic chain terminology. Medicine and Science in Sports and Exercise, 31, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Bobbert, M. F., & van Soest, A. J. (1994). Effects of muscle strengthening on vertical jump height: A simulation study. Medicine and Science in Sports and Exercise, 26, 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  • Bobbert, M. F., & van Zandwijk, J. P. (1999). Dynamics of force and muscle stimulation in human vertical jumping. Medicine & Science in Sports & Exercise, 31, 303–310.

    Article  CAS  Google Scholar 

  • Bunn, J. W. (1972). Scientific principles of coaching (2nd ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Callaghan, M. J., & Oldham, J. A. (1996). The role of quadriceps exercise in the treatment of patellofemoral pain syndrome. Sports Medicine, 21, 384–391.

    Article  CAS  PubMed  Google Scholar 

  • Caruthers, E. J., et al. (2016). Muscle forces and their contributions to vertical and horizontal acceleration of the center of mass during sit-to-stand transfer in young, healthy adults. Journal of Applied Biomechanics, 32, 487–503.

    Article  PubMed  Google Scholar 

  • Cavanagh, P. R., & Kram, R. (1985). The efficiency of human movement–A statement of the problem. Medicine & Science in Sports & Exercise, 17, 304–308.

    Article  CAS  Google Scholar 

  • Cronin, J., et al. (2001a). Developing explosive power: A comparison of technique and training. Journal of Science and Medicine in Sport, 4, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Cronin, J. B., et al. (2001b). Magnitude and decay of stretch-induced enhancement of power output. European Journal of Applied Physiology, 84, 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Cross, R. (2000). The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls. American Journal of Physics, 68, 1025–1031.

    Article  Google Scholar 

  • Cross, R. (2002). Measurements of the horizontal coefficient of restitution for a super ball and a tennis ball. American Journal of Physics, 70, 482–489.

    Article  Google Scholar 

  • Daish, C. B. (1972). The physics of ball games. London: The English Universities Press.

    Google Scholar 

  • DeVita, P., & Skelly, W. A. (1992). Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Medicine & Science in Sports & Exercise, 24, 108–115.

    Article  CAS  Google Scholar 

  • Di Fabio, R. P. (1999). Making jargon from kinetic and kinematic chains. Journal of Orthopaedic and Sports Physical Therapy, 29, 142–143.

    Article  Google Scholar 

  • Dillman, C. J., et al. (1994). Biomechanical differences of open and closed chain exercises with respect to the shoulder. Journal of Sport Rehabilitation, 3, 228–238.

    Article  Google Scholar 

  • Doorenbosch, C. A. M., et al. (1997). On the effectiveness of force application in guided leg movements. Journal of Motor Behavior, 29, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, B. C., et al. (1989). A biomechanical analysis of the sticking region in the bench press. Medicine & Science in Sports & Exercise, 21, 450–462.

    Article  CAS  Google Scholar 

  • Eng, J. J., et al. (1997). Intralimb dynamics simplify reactive control strategies during locomotion. Journal of Biomechanics, 30, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Escamilla, R. F., et al. (2000). Effects of throwing overweight and under-weight baseballs on throwing velocity and accuracy. Sports Medicine, 29, 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, A. G., et al. (1998). Multi-muscle control in human movements. Journal of Electromyography and Kinesiology, 8, 383–390.

    CAS  PubMed  Google Scholar 

  • Feltner, M. E. (1989). Three-dimensional interactions in a two-segment kinetic chain, II: Application to the throwing arm in baseball pitching. International Journal of Sport Biomechanics, 5, 420–450.

    Article  Google Scholar 

  • Feltner, M., & Dapena, J. (1986). Dynamics of the shoulder and elbow joints of the throwing arm during a baseball pitch. International Journal of Sport Biomechanics, 2, 235–259.

    Article  Google Scholar 

  • Feltner, M. E., et al. (1999). Upper extremity augmentation of lower extremity kinetics during counter-movement vertical jumps. Journal of Sports Sciences, 17, 449–466.

    Article  CAS  PubMed  Google Scholar 

  • Feltner, M. E., et al. (2004). Segmental and kinetic contributions in vertical jumps performed with and without and arm swing. Research Quarterly for Exercise and Sport, 75, 216–230.

    Article  PubMed  Google Scholar 

  • Fleisig, G. S., et al. (1995). Kinetics of baseball pitching with implications about injury mechanisms. American Journal of Sports Medicine, 23, 233–239.

    Article  CAS  Google Scholar 

  • Fong, D., et al. (2009). Biomechanics of supination ankle sprain: A case report of an accidental injury event in the laboratory. American Journal of Sports Medicine, 37, 822–827.

    Article  Google Scholar 

  • Fox, M. D., & Delp, S. L. (2010). Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds. Journal of Biomechanics, 43, 1450–1455.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukashiro, S., & Komi, P. V. (1987). Joint moment and mechanical power flow of the lower limb during vertical jump. International Journal of Sports Medicine, 8(Supp), 15–21.

    Article  PubMed  Google Scholar 

  • Funato, K., et al. (1996). Specific movement power related to athletic performance in weight lifting. Journal of Applied Biomechanics, 12, 44–57.

    Article  Google Scholar 

  • Funato, K., et al. (2000). Measurement of specific movement power application: Evaluation of weight lifters. Ergonomics, 43, 40–54.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, J. C., & Koshland, G. F. (2002). General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Experimental Brain Research, 142, 163–180.

    Article  PubMed  Google Scholar 

  • Garhammer, J. (1989). Weight lifting and training. In C. Vaughan (Ed.), Biomechanics of sport (pp. 169–211). Boca Raton: CRC Press.

    Google Scholar 

  • Hatze, H. (1993). The relationship between the coefficient of restitution and energy losses in tennis rackets. Journal of Applied Biomechanics, 9, 124–142.

    Article  Google Scholar 

  • Hay, J. G., et al. (1981). Technique and performance: Identifying the limiting factors. In A. Morecki (Ed.), Biomechanics VII-B (pp. 511–520). Baltimore: University Park Press.

    Google Scholar 

  • Hirashima, M., et al. (2002). Sequential muscle activity and its functional role in the upper extremity and trunk during overarm throwing. Journal of Sports Sciences, 20, 301–310.

    Article  PubMed  Google Scholar 

  • Hirashima, M., et al. (2008). Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis. Journal of Biomechanics, 41, 2874–2883.

    Article  PubMed  Google Scholar 

  • Hochmuth, G., & Marhold, G. (1978). The further development of biomechanical principles. In E. Asmussen & K. Jorgensen (Eds.), Biomechanics VI-B (pp. 93–106). Baltimore: University Park Press.

    Google Scholar 

  • Hong, D., et al. (2000). A three-dimensional, six-segment chain analysis of forceful overarm throwing. Journal of Electromyography and Kinesiology, 11, 95–112.

    Article  Google Scholar 

  • Hubley, C. L., & Wells, R. P. (1983). A work–energy approach to determine individual joint contributions to vertical jump performance. European Journal of Applied Physiology, 50, 247–254.

    Article  CAS  Google Scholar 

  • Izquierdo, M., et al. (1999). Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiological Scandinavica, 167, 57–68.

    Article  CAS  Google Scholar 

  • Johnson, D. L., & Bahamonde, R. (1996). Power output estimate in university athletes. Journal of Strength and Conditioning Research, 10, 161–166.

    Google Scholar 

  • Jorgensen, T. P. (1994). The physics of golf. New York: American Institute of Physics.

    Google Scholar 

  • Kaneko, M., et al. (1983). Training effect of different loads on the force–velocity and mechanical power output in human muscle. Scandinavian Journal of Sports Sciences, 5, 50–55.

    Google Scholar 

  • Khan, K. M., et al. (2000). Overuse tendinosis, not tendinitis, I: A new paradigm for a difficult clinical problem. Physican and Sportsmedicine, 28(5), 38–48.

    Article  CAS  Google Scholar 

  • Knudson, D. (2009). Correcting the use of the term “power” in the strength and conditioning literature. Journal of Strength and Conditioning Research, 23, 1902–1908.

    Article  PubMed  Google Scholar 

  • Koike, S., & Harada, Y. (2014). Dynamic contribution analysis of tennis-serve-motion in consideration of torque generating mode. Procedia Engineering, 72, 97–102.

    Article  Google Scholar 

  • Koike, S., et al. (2019). Direct and indirect effects of joint torque inputs during an induced speed analysis of a swinging motion. Journal of Biomechanics, 86, 8–16.

    Article  PubMed  Google Scholar 

  • Kong, P. W. (2009). Gastrocnemius injury during running: A case report. International Journal of Sports Medicine, 30, 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs, I., et al. (1999). Foot placement modifies kinematics and kinetics during drop jumping. Medicine & Science in Sports & Exercise, 31, 708–716.

    Article  CAS  Google Scholar 

  • Kreighbaum, E., & Barthels, K. M. (1996). Biomechanics: A qualitative approach to studying human movement. Boston: Allyn & Bacon.

    Google Scholar 

  • Lees, A., & Barton, G. (1996). The interpretation of relative momentum data to assess the contribution of the free limbs to the generation of vertical velocity in sports activities. Journal of Sports Sciences, 14, 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Lees, A., et al. (2004). Understanding how an arm swing enhances performance in the vertical jump. Journal of Biomechanics, 37, 1929–1940.

    Article  PubMed  Google Scholar 

  • Liu, W., et al. (2013). Multi-joint coordination of functional arm reaching: Induced position analysis. Journal of Applied Biomechanics, 29, 235–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luthanen, P., & Komi, P. V. (1978a). Segmental contributions to forces in vertical jump. European Journal of Applied Physiology, 38, 181–188.

    Article  Google Scholar 

  • Luthanen, P., & Komi, P. V. (1978b). Mechanical factors influencing running speed. In E. Asmussen & K. Jorgensen (Eds.), Biomechanics VI–B (pp. 23–29). Baltimore: University Park Press.

    Google Scholar 

  • Margaria, R., Aghemo, P., & Rovelli, E. (1966). Measurement of muscular power (anaerobic) in man. Journal of Applied Physiology, 21, 1662–1664.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, R. N., & Elliott, B. C. (2000). Long-axis rotation: The missing link in proximal-to-distal segmental sequencing. Journal of Sports Sciences, 18, 247–254.

    Article  CAS  PubMed  Google Scholar 

  • McBride, J. M., et al. (1999). A comparison of strength and power characteristics between power lifters, olympic lifters, and sprinters. Journal of Strength and Conditioning Research, 13, 58–66.

    Google Scholar 

  • McNair, P. J., et al. (2000). Decreasing landing forces: Effect of instruction. British Journal of Sports Medicine, 34, 293–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPoil, T. G., et al. (1995). A comparison of two in-shoe plantar pressure measurement systems. The Lower Extremity, 2, 95–103.

    Google Scholar 

  • Mena, D., et al. (1981). Analysis and synthesis of human swing leg motion during gait and its clinical applications. Journal of Biomechanics, 14, 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Miller, D. I. (1980). Body segment contributions to sport skill performance: Two contrasting approaches. Research Quarterly for Exercise and Sport, 51, 219–233.

    Article  CAS  PubMed  Google Scholar 

  • Nagano, A., et al. (1998). Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps. Journal of Biomechanics, 31, 951–955.

    Article  CAS  PubMed  Google Scholar 

  • Naito, K., & Maruyama, T. (2008). Contributions of the muscular torques and motion-dependent torques to generate rapid elbow extension during overhand baseball pitching. Sports Engineering, 11, 47–56.

    Article  Google Scholar 

  • Newton, R. U., et al. (1996). Kinematics, kinetics, and muscle activation during explosive upper body movements. Journal of Applied Biomechanics, 12, 31–43.

    Article  Google Scholar 

  • Nigg, B. M., et al. (1989). The tennis shoe–Biomechanical design criteria. In B. Segesser & W. Pforringer (Eds.), The shoe in sport (pp. 39–46). Chicago: Year Book Medical Publishers.

    Google Scholar 

  • Norman, R. (1975). Biomechanics for the community coach. JOPERD, 46(3), 49–52.

    Google Scholar 

  • Nunome, H., et al. (2002). Three-dimensional kinetic analysis of side-foot and instep soccer kicks. Medicine & Science in Sports & Exercise, 34, 2028–2036.

    Article  Google Scholar 

  • Nunome, H., Ikegami, Y., et al. (2006). Segmental dynamics of soccer instep kicking with the preferred and non-preferred leg. Journal of Sports Sciences, 24, 529–541.

    Article  PubMed  Google Scholar 

  • Nunome, H., Lake, M., et al. (2006). Impact phase kinematics of instep kicking in soccer. Journal of Sports Sciences, 24, 11–22.

    Article  PubMed  Google Scholar 

  • Pandy, M. G., et al. (1990). An optimal control model for maximum–height human jumping. Journal of Biomechanics, 23, 1185–1198.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S. J., et al. (1983). Quantification of intersegmental reactions during rapid swing motion. Journal of Biomechanics, 16, 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Plagenhoef, S. (1971). Patterns of human motion: A cinematographic analysis. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Putnam, C. (1991). A segment interaction analysis of proximal-to-distal sequential segment motion patterns. Medicine & Science in Sports & Exercise, 23, 130–144.

    Article  CAS  Google Scholar 

  • Putnam, C. (1993). Sequential motions of the body segments in striking and throwing skills: Descriptions and explanations. Journal of Biomechanics, 26(S1), 125–135.

    Article  PubMed  Google Scholar 

  • Roberts, E. M. (1991). Tracking velocity in motion. In C. L. Tant et al. (Eds.), Biomechanics in sports IX (pp. 3–25). Ames: Iowa State University.

    Google Scholar 

  • Sargent, D. A. (1921). The physical test of a man. American Physical Education Review, 26, 188–194.

    Article  Google Scholar 

  • Sayers, S. P., et al. (1999). Cross-validation of three jump power equations. Medicine & Science in Sports & Exercise, 31, 572–577.

    Article  CAS  Google Scholar 

  • Schieb, D. A. (1987, January). The biomechanics piezoelectric force plate. Soma, 14, 35–40.

    Google Scholar 

  • Schmidt, R. A., & Wrisberg, C. A. (2007). Motor learning and performance (4th ed.). Champaign: Human Kinetics.

    Google Scholar 

  • Sorensen, H., et al. (1996). Dynamics of the martial arts high front kick. Journal of Sports Sciences, 14, 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, H., et al. (2000). Biomechanical reflections on teaching fast motor skills. In Y. Hong & D. P. Johns (Eds.), Proceedings of XVIIIth international symposium on biomechanics in sports (Vol. 1, pp. 84–88). Hong Kong: The Chinese University of Hong Kong.

    Google Scholar 

  • Sprigings, E. J., & Neal, R. J. (2000). An insight into the importance of wrist torque in driving the golf ball: A simulation study. Journal of Applied Biomechanics, 16, 156–166.

    Article  Google Scholar 

  • Steindler, A. (1955). Kinesiology of the human body under normal and pathological conditions. Springfield: Charles C. Thomas.

    Google Scholar 

  • Tol, J. L., et al. (2002). The relationship of the kicking action in soccer and anterior ankle impingement syndrome: A biomechanical analysis. American Journal of Sports Medicine, 30, 45–50.

    Article  Google Scholar 

  • Tomioka, M., Owings, T. M., & Grabiner, M. D. (2001). Lower extremity strength and coordination are independent contributors to maximum vertical jump height. Journal of Applied Biomechanics, 17, 181–187.

    Article  Google Scholar 

  • Tsaousidis, N., & Zatsiorsky, V. (1996). Two types of ball–effector interaction and their relative contribution to soccer kicking. Human Movement Science, 15, 861–876.

    Article  Google Scholar 

  • van Ingen Schenau, G. J., & Cavanagh, P. R. (1999). Power equations in endurance sports. Journal of Biomechanics, 23, 865–881.

    Article  Google Scholar 

  • van Ingen Schenau, G. J., et al. (1989). Biomechanics of speed skating. In C. Vaughan (Ed.), Biomechanics of sport (pp. 121–167). Boca Raton: CRC Press.

    Google Scholar 

  • van Zandwijk, J. P., et al. (2000). Control of maximal and submaximal vertical jumps. Medicine & Science in Sports & Exercise, 32, 477–485.

    Article  Google Scholar 

  • Vigotsky, A. D., et al. (2019). Mechanical misconceptions: Have we lost the “mechanics” in “sports biomechanics”? Journal of Biomechanics, 93, 1–5.

    Article  PubMed  Google Scholar 

  • Whittle, M. (2001). Gait analysis: An introduction (3rd ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Wilson, G. J., et al. (1993). The optimal training load for the development of dynamic athletic performance. Medicine & Science in Sports & Exercise, 25, 1279–1286.

    Article  CAS  Google Scholar 

  • Winter, E. W. (2005). Jumping: Power or impulse? Medicine & Science in Sports & Exercise, 37, 523.

    Article  Google Scholar 

  • Winter, E. M., et al. (2016). Misuse of “Power” and other mechanical terms in sport and exercise science research. Journal of Strength and Conditioning Research, 30, 292–300.

    Article  PubMed  Google Scholar 

  • Zajac, F. E., & Gordon, M. E. (1989). Determining muscle’s force and action in multi-articular movement. Exercise and Sport Sciences Reviews, 17, 187–230.

    CAS  PubMed  Google Scholar 

  • Zatsiorksy, V. M., & Kraemer, W. J. (2006). Science and practice of strength training (2nd ed.). Champaign: Human Kinetics.

    Google Scholar 

  • Zatsiorsky, V. M. (1998). Kinematics of human motion. Champaign: Human Kinetics.

    Google Scholar 

  • Zernicke, R. F., et al. (1977). Human patellar-tendon rupture: A kinetic analysis. Journal of Bone and Joint Surgery, 59A, 179–183.

    Article  Google Scholar 

  • Zhang, S., et al. (2000). Contributions of lower extremity joints to energy dissipation during landings. Medicine & Science in Sports & Exercise, 32, 812–819.

    Article  CAS  Google Scholar 

Suggested Reading

  • Abernethy, P., et al. (1995). Strength and power assessment: Issues, controversies and challenges. Sports Medicine, 19, 401–417.

    Article  CAS  PubMed  Google Scholar 

  • Caruthers, E. J., et al. (2016). Muscle force and their contributions to vertical and horizontal acceleration of the center of mass during sit-to-stand transfer in young, healthy adults. Journal of Applied Biomechanics, 32, 487–503.

    Article  PubMed  Google Scholar 

  • Dowling, J. J., & Vamos, L. (1993). Identification of kinetic and temporal factors related to vertical jump performance. Journal of Applied Biomechanics, 9, 95–110.

    Article  Google Scholar 

  • Greenemeier, L. (2016). Blade runners: Do high-tech prostheses give runners an unfair advantage? Scientific American, scientificamerican.com/article/blade-runners-do-high-tech-prostheses-give-runners-an-unfair-advantage/.

  • Jorgensen, T. P. (1994). The physics of golf. New York: American Institute of Physics.

    Google Scholar 

  • Knudson, D. (2009). Correcting the use of the term “power” in the strength and conditioning literature. Journal of Strength and Conditioning Research, 23, 1902–1908.

    Article  PubMed  Google Scholar 

  • Lees, A., & Barton, G. (1996). The interpretation of relative momentum data to assess the contribution of the free limbs to the generation of vertical velocity in sports activities. Journal of Sports Sciences, 14, 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69, 1198–1204.

    Article  Google Scholar 

  • McPoil, T. G., et al. (1995). A comparison of two in-shoe plantar pressure measurement systems. The Lower Extremity, 2, 95–103.

    Google Scholar 

  • Zajac, F. E. (2002). Understanding muscle co-ordination of the human leg with dynamical simulations. Journal of Biomechanics, 35, 1011–1018.

    Article  PubMed  Google Scholar 

  • Zajac, F. E., & Gordon, M. E. (1989). Determining muscle‘s force and action in multi-articular movement. Exercise and Sport Sciences Reviews, 17, 187–230.

    Google Scholar 

  • Zatsiorsky, V. M. (2002). Kinetics of human motion. Champaign: Human Kinetics.

    Google Scholar 

Internet Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane Knudson .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knudson, D. (2021). Linear Kinetics. In: Fundamentals of Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-51838-7_6

Download citation

Publish with us

Policies and ethics