Skip to main content

On the Influence of Alloy Composition on Creep Behavior of Ni-Based Single-Crystal Superalloys (SXs)

  • Conference paper
  • First Online:
Superalloys 2020

Abstract

In the present work, three Ni-based single-crystal superalloys (SXs) were investigated, a Re-containing alloy ERBO/1 (CMSX-4 type) and two Re-free SXs referred to as ERBO/15 and ERBO/15-W, which differ in W content. The microstructural evolution of the three alloys during heat treatment and their creep behavior is investigated. When one applies one heat treatment to all three alloys, one obtains different γ/γ′-microstructures. Subjecting these three alloys to creep in the high-temperature low-stress creep regime, ERBO/15 outperforms ERBO/1. In order to separate the effects of alloy chemistry and microstructure, the kinetics of the microstructural evolution of the three alloys was measured. The results were used to establish similar microstructures in all three alloys. Comparing ERBO/15 with ERBO/15-W, it was found that in ERBO/15-W particles grow faster during the first precipitation heat treatment and that ERBO/15-W creeps significantly faster. At constant microstructures, ERBO/15 and ERBO/1 show similar creep behavior. In the high-temperature and low-stress creep regime, ERBO/15 shows lower minimum creep rates but ERBO/1 features a slower increase of creep rate in the tertiary creep regime. It was also found that in the high-temperature low-stress creep regime, ERBO/1 shows a double minimum creep behavior when particles are small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 11 October 2020

    The original version of the following chapters was inadvertently published with error. In chapter 6, equation 6, the incorrect word “quad” has been removed. In chapter 32, the updated Abstract has been included. The Chapters and book have been updated with the above changes.

References

  1. F. Garofalo: Fundamentals of creep and creep rupture, McMillan, New York, 1965.

    Google Scholar 

  2. R.W. Evans, B. Wilshire: Creep of Metals and Alloys, Institute of Materials, London, 1985.

    Google Scholar 

  3. J.P. Poirier: Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  4. J. Cadek: Creep in Metallic Materials, Elsevier, Amsterdam, 1988.

    Google Scholar 

  5. M.S.A. Karunaratne, P. Carter, R.C. Reed, Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 °C, Mater. Sci. Eng. A, 281 (2000) pp. 229–233.

    Google Scholar 

  6. A. Janotti, M. Krčmar,C.L. Fu, R.C. Reed, Solute diffusion in metals: Larger atoms can move faster, Phys. Rev. Lett., 92 (2004) 4 pages.

    Google Scholar 

  7. A. Mottura, M.K. Miller, R.C. Reed, Atom probe tomography analysis of possible rhenium clustering in nickel-based superalloys, in: Superalloys 2008, Proceedings of the 11th International Symposium of Superalloys, edited by: R.C. Reed et al., TMS, Warrendale, 2008, pp. 891–900.

    Google Scholar 

  8. E. Fleischmann, C. Konrad, J. Preussner, R. Volkl, E. Affeldt, U. Glatzel, Influence of Solid Solution Hardening on Creep Properties of Single-Crystal Nickel-Based Superalloys, Metall. Mater. Trans. A, 46A (2015) pp. 1125–1130.

    Google Scholar 

  9. K. Harris, G.L. Erickson, Single Crystal Alloy Technology, U.S. Patent, Michigan, Canon Muskegon Corporation, 4,643,782, app number 591,023.

    Google Scholar 

  10. K. Harris, G.L. Erickson, W.D. Brentnall, J.M. Aurrecoechea, S.L. Sikkenga, K.G. Kubarych, Development of the Rhenium Containing Superalloys CMSX-4 & CM 186 LC for Single Crystal Blade and Directionally Solidified Vane Applications in Advanced Turbine Engines, in: Superalloys 1992, Proceedings of the 7th International Symposium of Superalloys, edited by: S.D. Antolovich et al., TMS, Warrendale, 1992, pp. 297–306.

    Google Scholar 

  11. A.B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P. Choi, D. Raabe, A. Dlouhy, J. Müller, E. Spiecker, K. Demtröder, J. Schreuer, K. Neuking, G. Eggeler, Advanced scale bridging microstructure analysis of single crystal Ni-based superalloys, Adv. Eng. Mat., 17 (2015) pp. 216–230.

    Google Scholar 

  12. R. Rettig, K. Matuszewski, A. Müller, H.E. Helmer, N.C. Ritter, R.F. Singer, Development of a Low-Density Rhenium-Free Single Crystal Nickel-Based Superalloy by Application of Numerical Multi-Criteria Optimization Using Thermodynamic Calculations, in: Superalloys 2016, Proceedings of the 13th International Symposium of Superalloys, edited by: M.C. Hardy et al., TMS, Warrendale, 2016, pp. 35–44.

    Google Scholar 

  13. P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarizadeh, I. Steinbach, G. Eggeler, J. Frenzel, On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique, Mater. Des., 128 (2017) pp. 98–111.

    Google Scholar 

  14. J.J. Gilman: The art and science of growing crystals, John Wiley & Sons, New York, 1963.

    Google Scholar 

  15. M. McLean: Directionally solidified materials for high temperature service, The Metals Society, London, 1983.

    Google Scholar 

  16. A. Heckl, R. Rettig, R.F. Singer, Solidification Characteristics and Segregation Behavior of Nickel-Base Superalloys in Dependence on Different Rhenium and Ruthenium Contents, Metall. Mat. Trans. A, 41A (2010) pp. 202–211.

    Google Scholar 

  17. O.M. Horst, Influence of alloy composition and microstructure on the creep behaviour of single crystal Ni-base superalloys, Ph.D. thesis, Ruhr-University Bochum, 2020 (to appear shortly).

    Google Scholar 

  18. G. Mälzer, R.W. Hayes, T. Mack, G. Eggeler, Miniature specimen assessment of creep of the single-crystal superalloy LEK 94 in the 1000 °C temperature range, Metall. Mat. Trans. A, 38 (2007) 314–327.

    Google Scholar 

  19. P. Wollgramm, D. Bürger, A.B. Parsa, K. Neuking, G. Eggeler, The effect of stress, temperature and loading condition on the creep behavior of Ni-based single crystal superalloy miniature tensile specimens, Materials at High Temperatures, 33 (2016) pp. 346–360.

    Google Scholar 

  20. O.M. Horst, D. Adler, P. Git, H. Wang, J. Streitberger, M. Holtkamp, N. Jöns, R.F. Singer, C. Körner, G. Eggeler, Exploring the fundamentals of ni-based superalloy single crystal (SX) alloy design: Chemical composition vs. microstructure, 2020 (revision process in Mat. Des.).

    Google Scholar 

  21. O.M. Horst, B. Ruttert, D. Bürger, L. Heep, H. Wang, A. Dlouhý, W. Theisen, G. Eggeler, On the rejuvenation of crept Ni-Base single crystal superalloys (SX) by hot isostatic pressing (HIP), Mat. Sci. Eng. A, 758 (2019) pp. 202–214.

    Google Scholar 

  22. R. Urs, A. Gomez, R. Schürrmann, Imagic Image Management System (IMS) version 18, Imagic Bildverarbeitung AG, Glattbruck, 1999 https://www.imagic.ch/en/imagic-ims.

  23. R. Bürgel, H.J. Maier, T.Niendorf: Handbuch der Hochtemperatur-Werkstofftechnik, Vieweg Verlag, Wiesbaden, 2011.

    Google Scholar 

  24. L. Kaufman, H. Bernstein: Computer calculation of phase diagrams with special reference to refractory metals, Academic Press, New York, 1970.

    Google Scholar 

  25. H.L. Lukas, S.G. Fries, B.Sundman: Computational thermodynamics: The calphad method, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  26. V. Yardley, I. Povstugar, P.P. Choi, D. Raabe, A.B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E.P. George, G. Eggeler, On local phase equilibria and the appearance of nanoparticles in the microstructure of single-crystal Ni-base superalloys, Adv. Eng. Mater., 18 (2016) pp. 1556–1567.

    Google Scholar 

  27. J-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, THERMO-CALC & DICTRA, Computational tools for materials science, Calphad, 26 (2002) pp. 273–312.

    Google Scholar 

  28. X. Wu, P. Wollgramm, C. Somsen, A. Dlouhy, A. Kostka, G. Eggeler, Double minimum creep of single crystal Ni-base superalloys, Acta Mater., 112 (2016) pp. 242–260.

    Google Scholar 

  29. W. Ostwald: Lehrbuch der allgemeinen Chemie, W. Engelmann, University of California, 1887.

    Google Scholar 

  30. I.M. Lifshitz, V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 19 (1961) pp. 35–50.

    Google Scholar 

  31. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektroch., 65 (1961) pp. 581–591.

    Google Scholar 

  32. A.F. Giamei, D.L. Anton, Rhenium Additions to a Ni-Base Superalloy: Effects on Microstructure, Metall. Trans. A, 16A (1985) pp. 1997–2005.

    Google Scholar 

  33. R.A. MacKay., M.V. Nathal, γ′-Coarsening in High Volume Fraction Nickel-Base Alloys, Acta Metall. Mater., 38 (1990), pp. 993–1005.

    Google Scholar 

  34. A.M. Ges, O. Fornaro, H.A. Palacio, Coaersening behavior of a Ni-base superalloy under different heat treatment conditions, Mat. Sci. Eng. A, 458 (2007) pp. 96–100.

    Google Scholar 

  35. J. Lapin, M. Gebura, T. Pelachova, M. Nazmy, Coarsening kinetics of cuboidal γ′-precipitates in single crystal nickel base superalloy CMSX-4, Kovove Mater. 46 (2008) pp. 313–322.

    Google Scholar 

  36. T. Wang, G. Sheng, Z.-K. Liu, L.-Q. Chen, Coearening kinetics of γ′ precipitates in the Ni–Al–Mo system, Acta Mater., 56 (2008) pp. 5544–5551.

    Google Scholar 

  37. A. Heckl, S. Neumeier, M. Göken, R.F. Singer, The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528 (2011) pp. 3435–3444.

    Google Scholar 

  38. A.D. Cetel, D.N. Duhl, Second-Generation Nickel-Base Single Crystal Superalloy, in: Superalloys 1988, Proceedings of the 6th International Symposium of Superalloys, edited by: S. Reichman et al., TMS, Warrendale, 1988, pp. 235–244.

    Google Scholar 

  39. R.A. Mackay, M.V. Nathal, D.D. Pearson, Influence of Molybdenum on the Creep Properties of Nickel-Base Single-Crystals, Metall. Mater. Trans. A, 21 (1990) pp. 381–388.

    Google Scholar 

  40. S. Wöllmer, T. Mack, U. Glatzel, Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 319 (2001) pp. 792–795.

    Google Scholar 

  41. X. Wu, A. Dlouhy, Y.M. Eggeler, E. Spiecker, A. Kostka, C. Somsen, G. Eggeler, On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys, Acta Mater., 144 (2018) pp. 642–655.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German research association (Deutsche Forschungsgemeinschaft, DFG) in the framework of the collaborative research center SFB/TR 103. The authors appreciate funding through projects A1 (OMH, SI, JS, NW, PT, EG), B1 (PG, RFS, CK), B7 (FS, JF), and Z01 (PG, CK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Horst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horst, O.M. et al. (2020). On the Influence of Alloy Composition on Creep Behavior of Ni-Based Single-Crystal Superalloys (SXs). In: Tin, S., et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-51834-9_6

Download citation

Publish with us

Policies and ethics