Skip to main content

Tuning Strain Localization in Polycrystalline Nickel-Based Superalloys by Thermomechanical Processing

Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Thermomechanical processing routes are used to produce microstructures that minimize plastic strain localization at the sub-grain scale in a polycrystalline \(\gamma -\gamma \)’ nickel-based superalloy. This novel approach is made possible by the use of innovative experimental tools and statistical data analysis that capture slip events over large representative fields of view. Results are correlated to conventional observations of fatigue crack initiation and early stage of propagation. The effect of coherent twin boundaries and primary \(\gamma '\) precipitates on fatigue properties and plastic localization is detailed.

Keywords

  • Nickel-based superalloy
  • Slip bands
  • Annealing twin boundaries
  • Primary \(\gamma '\) precipitates
  • 3D microstructure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-51834-9_46
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-51834-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Antolovich, S. D. and Armstrong, R. W. (2014). Plastic strain localization in metals: origins and consequences. Progress in Materials Science, 59:1 – 160.

    CrossRef  Google Scholar 

  2. Ayachit, U. (2015). the ParaView Guide: a Parallel Visualization Application. Kitware, Clifton Park, NY.

    Google Scholar 

  3. Bataille, A. and Magnin, T. (1994). Surface damage accumulation in low-cycle fatigue: Physical analysis and numerical modelling. Acta Metallurgica et Materialia, 42(11):3817 – 3825.

    CAS  CrossRef  Google Scholar 

  4. Bourdin, F., Stinville, J., Echlin, M., Callahan, P., Lenthe, W., Torbet, C., Texier, D., Bridier, F., Cormier, J., Villechaise, P., Pollock, T., and Valle, V. (2018). Measurements of plastic localization by heaviside-digital image correlation. Acta Mater., 157:307–325.

    CAS  CrossRef  Google Scholar 

  5. Charpagne, M.-A. (2016). Microstructure evolutions during forging operations in René 65 superalloy. PhD thesis, Mines ParisTech, PSL University.

    Google Scholar 

  6. Charpagne, M. A., Billot, T., Franchet, J. M., and Bozzolo, N. (2016). Heteroepitaxial recrystallization: A new mechanism discovered in a polycrystalline \(\gamma \)-\(\gamma \) nickel based superalloy. J. Alloys Compd., 688:685–694.

    CAS  CrossRef  Google Scholar 

  7. Charpagne, M.-A., Franchet, J.-M., and Bozzolo, N. (2018). Overgrown grains appearing during sub-solvus heat treatment in a polycrystalline \(\gamma \)-\(\gamma \)’ Nickel-based superalloy. Mater. Des., 144.

    Google Scholar 

  8. Charpagne, M.-A., Polonsky, A., Echlin, M., Jacomet, S., De Jaeger, J., De Graef, M., Bozzolo, N., and Pollock, T. (2020a). Growth accidents induced by primary \(\gamma \)’ precipitates in a polycrystalline Nickel-based superalloy. Submitt. to Scr. Mater.

    Google Scholar 

  9. Charpagne, M. A., Stinville, J. C., Callahan, P. G., Texier, D., Chen, Z., Villechaise, P., Valle, V., and Pollock, T. M. (2020b). Automated and quantitative analysis of plastic strain localization via multi-modal data recombination. Mater. Charact., 163:110245.

    CAS  CrossRef  Google Scholar 

  10. Charpagne, M.-A., Strub, F., and Pollock, T. M. (2019). Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm. Mater. Charact.

    Google Scholar 

  11. Chen, Z. and Daly, S. H. (2017). Active slip system identification in polycrystalline metals by digital image correlation (dic). Experimental Mechanics, 57(1):115–127.

    CrossRef  Google Scholar 

  12. Di Gioacchino, F. and Quinta da Fonseca, J. (2013). Plastic strain mapping with sub-micron resolution using digital image correlation. Experimental Mechanics, 53(5):743–754.

    CrossRef  Google Scholar 

  13. Groeber, M. A. and Jackson, M. A. (2014). DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integrating Materials and Manufacturing Innovation, 3(1):5.

    Google Scholar 

  14. Heaney, C. M., Lasonde, M., Powell, A., Bond, B., and O’Brien, C. (2014). Development of a New Cast and Wrought Alloy (René 65) for High Temperature Disk Applications. In 8th Int. Symp. Superalloy 718 Deriv., pages 67–77.

    Google Scholar 

  15. Heinz, A. and Neumann, P. (1990). Crack initiation during high cycle fatigue of an austenitic steel. Acta Metallurgica et Materialia, 38(10):1933 – 1940.

    CAS  CrossRef  Google Scholar 

  16. Jiang, R., Pierron, F., Octaviani, S., and Reed, P. (2017). Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by sem-dic in an advanced disc alloy. Materials Science and Engineering: A, 699:128 – 144.

    CAS  CrossRef  Google Scholar 

  17. Kammers, A. D. and Daly, S. (2013a). Digital Image Correlation under Scanning Electron Microscopy: Methodology and Validation. Exp. Mech., 53(9):1743–1761.

    CrossRef  Google Scholar 

  18. Kammers, A. D. and Daly, S. (2013b). Self-Assembled Nanoparticle Surface Patterning for Improved Digital Image Correlation in a Scanning Electron Microscope. Exp. Mech., 53(8):1333–1341.

    CrossRef  Google Scholar 

  19. Lenthe, W. C., Stinville, J. C., Echlin, M. P., Chen, Z., Daly, S., and Pollock, T. M. (2018). Advanced detector signal acquisition and electron beam scanning for high resolution sem imaging. Ultramicroscopy, 195:93 – 100.

    CAS  CrossRef  Google Scholar 

  20. Mughrabi, H. (2013). Damage mechanisms and fatigue lives: From the low to the very high cycle regime. Procedia Engineering, 55:636 – 644. 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction.

    Google Scholar 

  21. Poissant, J. and Barthelat, F. (2010). A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Experimental Mechanics, 50(3):353–364.

    Google Scholar 

  22. Proudhon, H., Guéninchault, N., Forest, S., and Ludwig, W. (2018). Incipient bulk polycrystal plasticity observed by synchrotron in-situ topotomography. Materials, 11(10).

    Google Scholar 

  23. Reed, R. C. (2006). The Superalloys: Fundamentals and Applications. Cambridge University Press.

    Google Scholar 

  24. Réthoré, J., Hild, F., and Roux, S. (2007). Shear-band capturing using a multiscale extended digital image correlation technique. Computer Methods in Applied Mechanics and Engineering, 196(49-52):5016–5030.

    CrossRef  Google Scholar 

  25. Stinville, J., Callahan, P., Charpagne, M., Echlin, M., Valle, V., and Pollock, T. (2020a). Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation. Acta Materialia, 186:172 – 189.

    CAS  CrossRef  Google Scholar 

  26. Stinville, J., Echlin, M., Texier, D., Bridier, F., Bocher, P., and Pollock, T. (2015). Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Experimental Mechanics, pages 1–20.

    Google Scholar 

  27. Stinville, J., Lenthe, W., Miao, J., and Pollock, T. (2016). A combined grain scale elastic–plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater., 103:461–473.

    Google Scholar 

  28. Stinville, J. C., Callahan, P. G., Charpagne, M. A., Echlin, M. P., Valle, V., and Pollock, T. M. (2020b). Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation. Acta Mater., 186:172–189.

    CAS  CrossRef  Google Scholar 

  29. Stinville, J. C., Martin, E., Karadge, M., Ismonov, S., Soare, M., Hanlon, T., Sundaram, S., Echlin, M. P., Callahan, P. G., Lenthe, W. C., Miller, V., Miao, J., Wessman, A. E., Finlay, R., Loghin, A., Marte, J., and Pollock, T. M. (2018). Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes. Acta Materialia, 152:16 – 33.

    CAS  CrossRef  Google Scholar 

  30. Sutton, M. A., Li, N., Garcia, D., Cornille, N., Orteu, J. J., McNeill, S. R., Schreier, H. W., Li, X., and Reynolds, A. P. (2007). Scanning electron microscopy for quantitative small and large deformation measurements part II: Experimental validation for magnifications from 200 to 10, 000. Experimental Mechanics, 47(6):789–804.

    CrossRef  Google Scholar 

Download references

Acknowledgements

PCC is acknowledged for providing the René 65 material. GE is acknowledged for providing the René 88DT material. MAC, NB, and JCS acknowledge the support from the French Agency for Scientific Research (ANR) and from the Safran group, via the industrial chair ANR-Safran OPALE. MAC, JCS, TMP, ATP, SPM, and MPE gratefully acknowledge the support of Vannevar-Bush Fellowship Program, grant # N00014-18-1-3031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Charpagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Charpagne, M.A. et al. (2020). Tuning Strain Localization in Polycrystalline Nickel-Based Superalloys by Thermomechanical Processing. In: , et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-51834-9_46

Download citation