Skip to main content

Influence of Two Industrial Overhead Exoskeletons on Perceived Strain – A Field Study in the Automotive Industry

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1210)


Due to the increasing mean age of workforce across all industry sectors, work-related musculoskeletal diseases, which already have an impact on overall production capacities, are becoming more than ever the focus of attention. Strenuous postures, repetitive tasks, and heavy loads are risk factors for developing work-related diseases. Exoskeletons, which have been suggested as a preventative measure for musculoskeletal disorders, are piloted in various industrial environments. Although psychological and physiological consequences on the wearer have been increasingly investigated, the so far conducted studies mainly focused on the ergonomic evaluation in a laboratory setting. Field studies which evaluate the effects of exoskeletons under real working conditions are scarce. This paper investigates the influence of two different overhead exoskeletons on perceived strain among eight male associates on the assembly line of an automotive manufacturer. Assessment of perceived strain, body part related through Borg’s CR-10 scale combined with a modified body map and whole-body through a visual analogue scale (VAS), revealed statistically significant reductions in upper limbs, shoulders (anterior and posterior) as well as neck and spine while using the exoskeletons.


  • Overhead work
  • Shoulder injury
  • Work-related musculoskeletal disorders
  • Exoskeleton
  • Perceived strain
  • CR-10
  • Visual analogue scale
  • VAS

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Statistical office of the European communities: Health and safety at work in Europe (1999–2007). A statistical portrait. Eurostat. Statistical books. Office for official publications of the European Union, Luxembourg (2010)

    Google Scholar 

  2. Bundesanstalt für arbeitsschutz und arbeitsmedizin berufskrankheiten durch mechanische einwirkungen (2017)

    Google Scholar 

  3. Bjelle, A., Hagberg, M., Michaelsson, G.: Clinical and ergonomic factors in prolonged shoulder pain among industrial workers. Scand. J. Work Environ. Health 5(3), 205–210 (1979).

    CrossRef  Google Scholar 

  4. American Society of Biomechanics (Hrsg): EMG assessment of a shoulder support Exoskeleton during on-site job tasks (2017)

    Google Scholar 

  5. Bargende, M., Reuss, H.-C., Wiedemann, J. (Hrsg): 17. Internationales Stuttgarter Symposium. Automobil- und Motorentechnik. Proceedings. Springer Fachmedien Wiesbaden, Wiesbaden (2017)

    Google Scholar 

  6. de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016).

    CrossRef  Google Scholar 

  7. Weston, E.B., Alizadeh, M., Knapik, G.G., Wang, X., Marras, W.S.: Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Appl. Ergon. 68, 101–108 (2018).

    CrossRef  Google Scholar 

  8. Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E., O’Sullivan, L.W.: Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 70, 148–155 (2018).

    CrossRef  Google Scholar 

  9. Kim, S., Nussbaum, M.A., Mokhlespour Esfahani, M.I., Alemi, M.M., Alabdulkarim, S., Rashedi, E.: Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation. Part I - “Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. (2018).

  10. Kim, S., Nussbaum, M.A., Mokhlespour Esfahani, M.I., Alemi, M.M., Jia, B., Rashedi, E.: Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation. Part II - “Unexpected” effects on shoulder motion, balance, and spine loading. Appl. Ergon. (2018).

  11. Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., Kobayashi, H.: Quantitative performance analysis of exoskeleton augmenting devices - muscle suit - for manual worker. Int. J. Autom. Technol. 5(4), 559–567 (2011).

    CrossRef  Google Scholar 

  12. Ferguson, S.A., Allread, W.G., Le, P., Rose, J., Marras, W.S.: Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy. Hum. Factors 55(6), 1077–1087 (2013).

    CrossRef  Google Scholar 

  13. Bier, M.: Ergonomie der Überkopfarbeit. Zugl.: Darmstadt, Techn. Hochsch., Diss. Fortschritt-Berichte VDI @Reihe 17, Bd 70. VDI Verl., Düsseldorf (1991)

    Google Scholar 

  14. Borg, G.: Borg’s Perceived Exertion and Pain Scales. Human Kinetics, Champaign (1998)

    Google Scholar 

  15. Corlett, E.N., Bishop, R.P.: A technique for assessing postural discomfort. Ergonomics 19(2), 175–182 (1976).

    CrossRef  Google Scholar 

  16. Kersten, P., Küçükdeveci, A.A., Tennant, A.: The use of the visual analogue scale (VAS) in rehabilitation outcomes. J. Rehabil. Med. 44(7), 609–610 (2012).

    CrossRef  Google Scholar 

  17. Kluth, K.: Analyse, Beurteilung und ergonomische Gestaltung von Arbeitsplätzen in Selbstbedienungsläden. Höpner und Göttert, Siegen (2001)

    Google Scholar 

  18. Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., Cavatorta, M.P.: Analysis of exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. In: Proceedings of the AHFE 2017 International Conference on Physical Ergonomics and Human Factors. Springer, Heidelberg (2018)

    Google Scholar 

  19. Hefferle, M., Dahmen, C., Kluth, K.: Einfluss eines Exoskeletts zur Unterstützung von Überkopftätigkeiten in der Automobilindustrie auf die subjektive, körperliche Beanspruchung. Eine explorative Feldstudie. ASU - Arbeitsmedizin, Sozialmedizin, Umweltmedizin (12) (2019)

    Google Scholar 

  20. Hensel, R., Keil, M.: Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen. Z. Arb. Wiss. 72(4), 252–263 (2018).

    CrossRef  Google Scholar 

  21. Kim, S., Nussbaum, M.A.: A follow-up study of the effects of an arm support exoskeleton on physical demands and task performance during simulated overhead work. IISE Trans. Occup. Ergon. Hum. Factors 1–12 (2019).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Hefferle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hefferle, M., Snell, M., Kluth, K. (2021). Influence of Two Industrial Overhead Exoskeletons on Perceived Strain – A Field Study in the Automotive Industry. In: Zallio, M. (eds) Advances in Human Factors in Robots, Drones and Unmanned Systems. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1210. Springer, Cham.

Download citation