Skip to main content

Properties of the Confining Force

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 972))

  • 796 Accesses

Abstract

The properties of the confining force: asymptotic linearity, Casimir scaling at intermediate scales, N-ality dependence asymptotically, and the Lüscher term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the calculation on which this figure is based uses a method which creates metastable flux tubes, which are then allowed to propagate for a relatively short Euclidean time interval. This procedure is insensitive to the string-breaking process, and hence one can only calculate the string tension of the metastable states.

  2. 2.

    To add to the “Casimir” confusion, the Lüscher term is known to string theorists as the “Casimir energy.”

References

  1. C. Bachas, Convexity of the quarkonium potential. Phys. Rev. D 33, 2723 (1986)

    Article  ADS  Google Scholar 

  2. G. Bali, QCD forces and heavy quark bound states. Phys. Rept. 343, 1 (2001). arXiv: hep-ph/0001312

    Google Scholar 

  3. J. Ambjorn, P. Olesen, C. Peterson, Stochastic confinement and dimensional reduction: (1). Four-Dimensional SU(2) lattice gauge theory. Nucl. Phys. B 240, 189 and 533 (1984)

    Google Scholar 

  4. P. Olesen, Confinement and random fluxes. Nucl. Phys. B 200 [FS4], 381 (1982)

    Google Scholar 

  5. J. Greensite, Calculation of the Yang-Mills vacuum wave functional. Nucl. Phys. B 158, 469 (1979). Nucl. Phys. B166, 113 (1980)

    Google Scholar 

  6. G. Bali, Casimir scaling of SU(3) static potentials. Phys. Rev. D 62, 114503 (2000). arXiv: hep-lat/0006022

    Google Scholar 

  7. L. Del Debbio, M. Faber, J. Greensite, Š. Olejník, Casimir scaling versus Abelian dominance in QCD string formation. Phys. Rev. D 53, 5891 (1996). arXiv: hep-lat/9510028

    Google Scholar 

  8. L. Del Debbio, M. Faber, J. Greensite, Š. Olejník, Some cautionary remarks on Abelian projection and Abelian dominance. Nucl. Phys. Proc. Suppl. 53, 141 (1997). arXiv: hep-lat/9607053

    Google Scholar 

  9. P. de Forcrand, S. Kratochvila, Observing string breaking with Wilson loops. Nucl. Phys. Proc. Suppl. 119, 670. arXiv: hep-lat/0209094

    Google Scholar 

  10. M. Lüscher, P. Weisz, Quark confinement and the bosonic string. JHEP 07, 049 (2002). arXiv: hep-lat/0207003

    Google Scholar 

  11. M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B 180(FS2), 317 (1981)

    Google Scholar 

  12. O. Alvarez, The static potential in string models. Phys. Rev. D 24, 440 (1981)

    Article  ADS  Google Scholar 

  13. M. Lüscher, G. Münster, P. Weisz, How thick are chromoelectric flux tubes? Nucl. Phys. B 180(FS2), 1 (1981)

    Google Scholar 

  14. A. Hasenfratz, E. Hasenfratz and P. Hasenfratz, Generalized roughening transition and its effect on the string tension. Nucl. Phys. B 180, 353 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. K.J. Juge, J. Kuti, C. Morningstar, QCD string formation and the Casimir energy. arXiv: hep-lat/0401032

    Google Scholar 

  16. V.G. Bornyakov, A.V. Kovalenko, M.I. Polikarpov, D.A. Sigaev, Confining string and P-vortices in the indirect Z(2) projection of SU(2) lattice gauge theory. Nucl. Phys. Proc. Suppl. 119, 739 (2003). arXiv:hep-lat/0209029

    Google Scholar 

  17. J. Kuti, QCD and string theory. PoS LAT2005, 001 (2006). arXiv:hep-lat/0511023

    Google Scholar 

  18. A. Athenodorou, B. Bringoltz, M. Teper, The closed string spectrum of SU(N) gauge theories in 2 + 1 dimensions. Phys. Lett. B 656, 132 (2007). arXiv:0709.0693 [hep-lat]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greensite, J. (2020). Properties of the Confining Force. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-51563-8_5

Download citation

Publish with us

Policies and ethics