Skip to main content

The Vacuum Wavefunctional

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 972))

  • 800 Accesses


The Yang-Mills vacuum wavefunctional as a bridge to magnetic disorder in lower dimensions. Proposals for the Yang-Mills vacuum wavefunctional in 2+1 dimensions. Numerical tests in temporal gauge. The Karabali-Nair “new variables” approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    As already mentioned in Chap. 10, it may still be useful in a physical gauge to introduce Faddeev-Popov ghosts in the path integral, but the essential point is that in a physical gauge these ghosts do not propagate in time.

  2. 2.

    An attempt to overcome this difficulty by inclusion of monopole fields is in [11].

  3. 3.

    In quantum gravity this subspace of the set of all configurations is known as “minisuperspace.”

  4. 4.

    The subtraction of λ 0 is introduced so that spectrum of D 2 − λ 0 + m 2 begins at m 2, rather than infinity in the continuum limit. Apart from this subtraction, the proposal is the same as an earlier suggestion by Samuel [13].

  5. 5.

    More precisely, it is the eigenstate of the lattice transfer matrix \(T=\exp [-Ha]\) with the highest eigenvalue.

  6. 6.

    Recently some corrections to σ have been calculated [17], and they are small. At present it is not entirely clear why the correction is so small, since it involves a sum of rather large (positive and negative) contributing terms, which for some reason nearly cancel.


  1. J. Greensite, Calculation of the Yang-Mills vacuum wavefunctional. Nucl. Phys. B 158, 469 (1979)

    Article  ADS  Google Scholar 

  2. M.B. Halpern, Field strength and dual variables formulations of gauge theories. Phys. Rev. D 19, 517 (1979)

    Article  ADS  Google Scholar 

  3. J. Greensite, Large scale vacuum structure and new calculational techniques in lattice SU(N) gauge theory. Nucl. Phys. B 166, 113 (1980)

    Article  ADS  Google Scholar 

  4. J. Greensite, J. Iwasaki, Monte Carlo study of the Yang-Mills vacuum wave functional in D = 4 dimensions. Phys. Lett. B 223, 207 (1989)

    Article  ADS  Google Scholar 

  5. H. Arisue, Monte Carlo measurement of the vacuum wave function for non-Abelian gauge theory in D = three-dimensions. Phys. Lett. B 280, 85 (1992)

    Article  ADS  Google Scholar 

  6. J. Greensite, S. Olejnik, D. Zwanziger, Coulomb energy, remnant symmetry, and the phases of non-Abelian gauge theories. Phys. Rev. D 69, 074506 (2004)

    Article  ADS  Google Scholar 

  7. A.P. Szczepaniak, E.S. Swanson, Coulomb gauge QCD, confinement, and the constituent representation. Phys. Rev. D 65, 025012 (2002). [arXiv:hep-ph/0107078]

    Article  ADS  Google Scholar 

  8. A.P. Szczepaniak, Confinement and gluon propagator in Coulomb gauge QCD. Phys. Rev. D 69, 074031 (2004). [arXiv:hep-ph/0306030].

    Article  ADS  Google Scholar 

  9. H. Reinhardt, C. Feuchter, On the Yang-Mills wave functional in Coulomb gauge. Phys. Rev. D 71, 105002 (2005). [arXiv:hep-th/0408237]

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Feuchter, H. Reinhardt, Variational solution of the Yang-Mills Schroedinger equation in Coulomb gauge. Phys. Rev. D 70, 105021 (2004). [arXiv:hep-th/0408236]

    Article  ADS  MathSciNet  Google Scholar 

  11. A.P. Szczepaniak, H.H. Matevosyan, A model for QCD ground state with magnetic disorder (2010). arXiv:1003.1901 [hep-ph]

    Google Scholar 

  12. J. Greensite, S. Olejnik, Dimensional reduction and the Yang-Mills vacuum state in 2+1 dimensions. Phys. Rev. D 77, 065003 (2008). [arXiv:0707.2860 [hep-lat]]

    Google Scholar 

  13. S. Samuel, On the 0++ glueball mass. Phys. Rev. D 55, 4189 (1997). [arXiv:hep-ph/9604405]

    Article  ADS  Google Scholar 

  14. H.B. Meyer, M.J. Teper, Glueball Regge trajectories in (2+1)-dimensional gauge theories. Nucl. Phys. B 668, 111 (2003). [arXiv:hep-lat/0306019]

    Article  ADS  Google Scholar 

  15. J. Greensite, S. Olejnik, Coulomb confinement from the Yang-Mills vacuum state in 2+1 dimensions (2010). arXiv:1002.1189

    Google Scholar 

  16. D. Karabali, C. Kim, V.P. Nair, On the vacuum wave function and string tension of Yang-Mills theories in (2+1) dimensions. Phys. Lett. B 434, 103 (1998). [arXiv:hep-th/9804132]

    Article  ADS  Google Scholar 

  17. D. Karabali, V.P. Nair, A. Yelnikov, The Hamiltonian approach to Yang-Mills (2+1): an expansion scheme and corrections to string tension. Nucl. Phys. B 824, 387 (2010). [arXiv:0906.0783 [hep-th]]

    Google Scholar 

  18. E. Witten, Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Bringoltz, M. Teper, A precise calculation of the fundamental string tension in SU(N) gauge theories in 2+1 dimensions. Phys. Lett. B 645, 383 (2007). [arXiv:hep-th/0611286]

    Article  ADS  MathSciNet  Google Scholar 

  20. R.G. Leigh, D. Minic, A. Yelnikov, On the Glueball spectrum of pure Yang-Mills theory in 2+1 dimensions. Phys. Rev. D 76, 065018 (2007). [arXiv:hep-th/0604060]

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Greensite, H. Matevosyan, S. Olejnik, M. Quandt, H. Reinhardt, A. Szczepaniak, Testing proposals for the Yang-Mills vacuum wavefunctional by measurement of the vacuum. Phys. Rev. D 83, 114509 (2011). [arXiv:1102.3941 [hep-lat]]

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greensite, J. (2020). The Vacuum Wavefunctional. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 972. Springer, Cham.

Download citation

Publish with us

Policies and ethics