Skip to main content

Coulomb Confinement

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 972))


The Gribov horizon, Neuberger’s theorem, and the Gribov-Zwanziger confinement scenario. Coulomb confinement as a necessary condition for confinement. Numerical results for the Coulomb potential on the lattice, and the low-lying Faddeev-Popov eigenvalue spectrum. The role of center vortices in Coulomb confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    BRST quantization is described in most modern textbooks on quantum field theory; e.g. [5].

  2. 2.

    At the quantum level, the Hamiltonian contains factors of \((\det M)^{1/2}\) and \((\det M)^{-1/2}\), which cancel out in the classical limit where the ordering of operators is irrelevant [8]. These factors also cancel out in the expression for the Coulomb energy due to static color sources.

  3. 3.

    Another approach is to calculate 〈K ab(x, y; A)〉 directly, via Monte Carlo simulations. This computationally more demanding procedure has been followed in [11] for the SU(3) gauge group, with the result that the Coulomb potential is linearly confining, with a string tension that is greater (by a factor estimated at 1.6) than the asymptotic string tension.


  1. V. Gribov, Quantization of non-Abelian gauge theories. Nucl. Phys. B 139, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Zwanziger, Vanishing of the zero-momentum lattice gluon propagator and color confinement. Nucl. Phys. B 364, 127 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Zwanziger, Renormalization in Coulomb gauge and an order parameter for confinement in QCD. Nucl. Phys. B 518, 237 (1998)

    Article  ADS  Google Scholar 

  4. H. Neuberger, Non-perturbative BRS invariance and the Gribov problem. Phys. Lett. B 183, 337 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Srednicki, Quantum Field Theory (Cambridge University Press, New York, NY, 2007); M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, MA, 1995)

    Google Scholar 

  6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, New York, NY, 2007)

    MATH  Google Scholar 

  7. E.S. Abers, B.W. Lee, Gauge theories. Phys. Rept. 9, 1 (1973)

    Article  ADS  Google Scholar 

  8. N.H. Christ, T.D. Lee, Operator ordering and Feynman rules in gauge theories. Phys. Rev. D 22, 939 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Zwanziger, No confinement without Coulomb confinement. Phys. Rev. Lett. 90, 102001 (2003). arXiv: hep-th/0209105

    Google Scholar 

  10. J. Greensite, Š. Olejník, Coulomb energy, vortices, and confinement. Phys. Rev. D 67, 094503 (2003). arXiv: hep-lat/0302018

    Google Scholar 

  11. A. Voigt, E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, The effective Coulomb potential in SU(3) lattice Yang-Mills theory. Phys. Rev. D 78, 014501 (2008). arXiv:0803.2307 [hep-lat]

    Google Scholar 

  12. S. Necco, R. Sommer, The N(f) = 0 heavy quark potential from short to intermediate distances. Nucl. Phys. B 622, 328 (2002). hep-lat/0108008

    Google Scholar 

  13. J. Greensite, A.P. Szczepaniak, Coulomb string tension, asymptotic string tension, and the gluon chain. Phys. Rev. D 91(3), 034503 (2015). arXiv:1410.3525 [hep-lat]

    Google Scholar 

  14. Y. Nakagawa, A. Nakamura, T. Saito, H. Toki, D. Zwanziger, Properties of color-Coulomb string tension. Phys. Rev. D 73, 094504 (2006). hep-lat/0603010

    Google Scholar 

  15. K. Chung, J. Greensite, Coulomb flux tube on the lattice. Phys. Rev. D 96(3), 034512 (2017). arXiv:1704.08995 [hep-lat]

  16. S.M. Dawid, A.P. Szczepaniak, The Coulomb flux tube revisited. Phys. Rev. D 100, 074508 (2019).

    Article  ADS  Google Scholar 

  17. M. Lavelle, D. McMullan, Hadrons without strings. Phys. Lett. B 471, 65 (1999). arXiv: hep-ph/9910398

    Google Scholar 

  18. J. Greensite, S. Olejnik, D. Zwanziger, Center vortices and the Gribov horizon. JHEP 0505, 070 (2005). arXiv:hep-lat/0407032

    Google Scholar 

  19. R.B. Lehoucq, D.C. Sorensen, C. Yang, Arpack User’s Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998)

    Google Scholar 

  20. P. de Forcrand, M. D’Elia, On the relevance of center vortices to QCD. Phys. Rev. Lett. 82, 4582 (1999). arXiv:hep-lat/9901020

    Google Scholar 

  21. J. Greensite, S. Olejnik, D. Zwanziger, Coulomb energy, remnant symmetry, and the phases of non-Abelian gauge theories. Phys. Rev. D 69, 074506 (2004). arXiv:hep-lat/0401003

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greensite, J. (2020). Coulomb Confinement. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 972. Springer, Cham.

Download citation

Publish with us

Policies and ethics