Skip to main content

Coupling Dynamics of Complex Electromechanical System

  • Conference paper
  • First Online:
Application of Intelligent Systems in Multi-modal Information Analytics (MMIA 2020)

Abstract

Complex electromechanical systems play a very important role in people’s actual production and life. In the traditional discrete serial design mode, many mechanical and electrical equipment are designed to enhance operating conditions or product performance requirements, showing many performance limitations. Based on the above background, the purpose of this paper is to study the coupled dynamics of complex electromechanical systems. This article first introduces the historical development process, research direction, research results and related conclusions of previous people about nonlinear mechanical systems and electromechanical coupled dynamic systems, and briefly introduces Lagrange Maxwell’s equations to illustrate electromechanical coupled dynamics. The system has great research value. Secondly, the basic concepts of electromechanical coupling dynamic system are introduced, and the circuit equations of the system are described in detail. Finally, the coupled dynamics simulation of the motor and mechanical system was carried out to analyze the dynamic performance of electric wheels. ADAMS and MATLAB software are used to carry out joint simulation, and an electromechanical coupling dynamic model is established. For the characteristics of starting, steady speed, uphill and deceleration belts, the wheel motion characteristics are calculated respectively. The speed performance and impact resistance were systematically evaluated. Aiming at the dynamic response of the motor under sudden load, the target torque control method was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H.-P., Shi, W.-H.: Analyzing the characteristics of electromechanical coupling of a three-parameter energy harvester. J. Vib. Eng. 30(2), 214–221 (2017)

    Google Scholar 

  2. Wang, D., Ma, N., Guo, C.: Study on the characteristics of electromechanical disturbance propagation in non-uniform power systems. IET Gener. Transm. Distrib. 11(8), 1919–1925 (2017)

    Article  Google Scholar 

  3. Cernotik, O., Mahmoodian, S., Hammerer, K.: Spatially adiabatic frequency conversion in optoelectromechanical arrays. Phys. Rev. Lett. 121(11), 110506 (2018)

    Article  Google Scholar 

  4. Tokatli, A., Yiginer, O., Kilicaslan, F.: Quantification of atrial electrical heterogeneity via atrial electromechanical coupling. J. Sports Med. Phys. Fit. 57(1–2), 162 (2017)

    Google Scholar 

  5. Gong, L.J., Pan, C.L., Pan, Q.S.: Analysis of the actuating effects of triple-layer piezoelectric cantilevers considering electromechanical coupling correction. Mod. Phys. Lett. B 31(4), 1750024 (2017)

    Google Scholar 

  6. Zhang, L.: Impact reduction method for electric vehicle dual-mode coupling drive system with modes shift. J. Mech. Eng. 54(8), 165 (2018)

    Article  Google Scholar 

  7. Zhang, S., Xu, J.: Review on nonlinear dynamics in systems with coupling delays. Chin. J. Theor. Appl. Mech. 49(3), 565–587 (2017)

    Google Scholar 

  8. Junzhou, H.U.O.: TBM electromechanical coupling modeling and comparative analysis of synchronous drive control strategy. J. Mech. Eng. 54(1), 120 (2018)

    Article  Google Scholar 

  9. Lee, J., Wang, Z., He, K.: Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci. Adv. 4(3), eaao6653 (2018)

    Google Scholar 

  10. Treadway, E., Gan, Z., David Remy, C.: Toward controllable hydraulic coupling of joints in a wearable robot. IEEE Trans. Robot. PP(99), 1–16 (2018)

    Google Scholar 

  11. Smith, C.M., Housh, T.J., Hill, E.C.: Effects of fatigue and recovery on electromechanical delay during isokinetic muscle actions. Physiol. Meas. 38(10), 1837 (2017)

    Article  Google Scholar 

  12. Lin, C.H.: Modeling and analysis of power trains for hybrid electric vehicles. Int. Trans. Electr. Energy Syst. 28(6), e2541 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Liao, X. (2021). Coupling Dynamics of Complex Electromechanical System. In: Sugumaran, V., Xu, Z., Zhou, H. (eds) Application of Intelligent Systems in Multi-modal Information Analytics. MMIA 2020. Advances in Intelligent Systems and Computing, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-51556-0_9

Download citation

Publish with us

Policies and ethics