Skip to main content

Lipids and Glucose Metabolism

  • Chapter
  • First Online:
Klinefelter’s Syndrome

Abstract

Subjects with Klinefelter syndrome (KS) develop several metabolic abnormalities more frequently than normal males, with a higher prevalence of obesity, type 2 diabetes (T2D), dyslipidemia, and metabolic syndrome. The etiology factors causing the increased prevalence of metabolic disorders have not been completely clarified and may involve several mechanisms, rather than simply the direct consequence of hypogonadism alone. While reduced levels of testosterone cause an unfavorable change in body composition, with higher fraction of body fat in KS compared to 46-XY peers, testosterone replacement therapy in hypogonadal KS subjects, even if associated with an improvement of body composition, is not totally effective in ameliorating lipid and glycemic abnormalities. Moreover, changes in body composition develop before puberty in KS subjects, suggesting a role of non-hormonal factors. Most genes on the redundant X chromosome(s) are subject to X inactivation, but there is a pseudo-autosomal region containing multiple genes that escape inactivation. The association of more severe karyotypes with higher prevalence of T2D suggests a role of the supernumerary X chromosomes in the onset of T2D in KS. Nevertheless, KS is associated with DNA methylation changes across the entire genome, which might be important in this context since the genetic basis of complex traits such as T2D is thought to be much related with subtle changes in the epigenome and transcriptome. Further research is needed to address this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han SJ, Kim K-S, Kim W, Kim JH, Lee Y, Nam JS, et al. Obesity and hyperglycemia in Korean men with Klinefelter syndrome: the Korean Endocrine Society Registry. Endocrinol Metab. 2016;31:598.

    Article  CAS  Google Scholar 

  2. Bojesen A, Juul S, Birkebæk NH, Gravholt CH. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab. 2006;91:1254–60.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang-Feng M, Hong-Li X, Xue-Yan W, Min N, Shuang-Yu L, Hong-Ding X, et al. Prevalence and risk factors of diabetes in patients with Klinefelter syndrome: a longitudinal observational study. Fertil Steril. 2012;98:1331–5.

    Article  PubMed  Google Scholar 

  4. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child. 2008;93:30–4.

    Article  CAS  PubMed  Google Scholar 

  5. Bardsley MZ, Falkner B, Kowal K, Ross JL. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011;100:866–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calogero AE, Giagulli VA, Mongioì LM, Triggiani V, Radicioni AF, Jannini EA, et al. Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. J Endocrinol Invest Italy. 2017;40:705–12.

    Article  CAS  Google Scholar 

  7. Seminog OO, Seminog AB, Yeates D, Goldacre MJ. Associations between Klinefelter’s syndrome and autoimmune diseases: English national record linkage studies. Autoimmunity. 2015;48:125–8.

    Article  CAS  PubMed  Google Scholar 

  8. Panimolle F, Tiberti C, Granato S, Semeraro A, Gianfrilli D, Anzuini A, et al. Screening of endocrine organ-specific humoral autoimmunity in 47,XXY Klinefelter’s syndrome reveals a significant increase in diabetes-specific immunoreactivity in comparison with healthy control men. Endocrine. 2016;52:157–64.

    Article  CAS  PubMed  Google Scholar 

  9. Di Minno MND, Esposito D, Di Minno A, Accardo G, Lupoli G, Cittadini A, et al. Increased platelet reactivity in Klinefelter men: something new to consider. Andrology. 2015;3:876–81.

    Article  PubMed  CAS  Google Scholar 

  10. Bojesen A, Stochholm K, Juul S, Gravholt CH. Socioeconomic trajectories affect mortality in Klinefelter syndrome. J Clin Endocrinol Metab. 2011;96:2098–104.

    Article  CAS  PubMed  Google Scholar 

  11. Pasquali D, Arcopinto M, Renzullo A, Rotondi M, Accardo G, Salzano A, et al. Cardiovascular abnormalities in Klinefelter syndrome. Int J Cardiol. 2013;168:754–9.

    Article  PubMed  Google Scholar 

  12. Kanakis GA, Nieschlag E. Klinefelter syndrome: more than hypogonadism. Metabolism. 2018;86:135–44.

    Article  CAS  PubMed  Google Scholar 

  13. Glass AR, Swedloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45:1211–9.

    Article  CAS  PubMed  Google Scholar 

  14. Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Salonen R, et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol. 2003;149:601–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zumoff B, Strain GW, Miller LK, Rosner W, Senie R, Seres DS, et al. Plasma free and non-sex-hormone-binding-globulin bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab. 1990;71:929–31.

    Article  CAS  PubMed  Google Scholar 

  16. Pasquali R, Casimirri F, Cantobelli S, Melchionda N, Maria Morselli Labate A, Fabbri R, et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism. 1991;40:101–4.

    Article  CAS  PubMed  Google Scholar 

  17. Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P, et al. The metabolic syndrome is frequent in Klinefelter’s syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care. 2006;29:1591–8.

    Article  PubMed  Google Scholar 

  18. Brand JS, van der Tweel I, Grobbee DE, Emmelot-Vonk MH, van der Schouw YT. Testosterone, sex hormone-binding globulin and the metabolic syndrome: a systematic review and meta-analysis of observational studies. Int J Epidemiol. 2011;40:189–207.

    Article  PubMed  Google Scholar 

  19. East BW, Boddy K, Price WH. Total body potassium content in males with X and Y chromosome abnormalities. J Clin Endocrinol (Oxf). 1976;5:43–51.

    Article  CAS  Google Scholar 

  20. Ramirez ME, McMurry MP, Wiebke GA, Felten KJ, Ren K, Meikle AW, et al. Evidence for sex steroid inhibition of lipoprotein lipase in men: comparison of abdominal and femoral adipose tissue. Metabolism. 1997;46:179–85.

    Article  CAS  PubMed  Google Scholar 

  21. Gruen R, Hietanen E, Greenwood MRC. Increased adipose tissue lipoprotein lipase activity during the development of the genetically obese rat (fa/fa). Metabolism. 1978;27:1955–66.

    Article  CAS  PubMed  Google Scholar 

  22. Mårin P, Lönn L, Andersson B, Odén B, Olbe L, Bengtsson BA, et al. Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: effects of testosterone. J Clin Endocrinol Metab. 1996;81:1018–22.

    PubMed  Google Scholar 

  23. Yanase T, Fan W, Kyoya K, Min L, Takayanagi R, Kato S, et al. Androgens and metabolic syndrome: lessons from androgen receptor knock out (ARKO) mice. J Steroid Biochem Mol Biol. 2008;109:254–7.

    Article  CAS  PubMed  Google Scholar 

  24. Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and Lipolytic activity but show Normal insulin sensitivity with high adiponectin secretion. Diabetes. 2005;54:1000–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sato T, Matsumoto T, Yamada T, Watanabe T, Kawano H, Kato S. Late onset of obesity in male androgen receptor-deficient (AR KO) mice. Biochem Biophys Res Commun. 2003;300:167–71.

    Article  CAS  PubMed  Google Scholar 

  26. McInnes KJ, Smith LB, Hunger NI, Saunders PTK, Andrew R, Walker BR. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes. 2012;61:1072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grossmann M, Ng Tang Fui M, Cheung AS. Late-onset hypogonadism: metabolic impact. Andrology. 2019;andr.12705.

    Google Scholar 

  28. Rastrelli G, Filippi S, Sforza A, Maggi M, Corona G. Metabolic syndrome in male hypogonadism. Front Horm Res. 2018;49:131–55.

    Article  CAS  PubMed  Google Scholar 

  29. Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24:4448–56.

    Article  CAS  PubMed  Google Scholar 

  30. Basaria S, Muller DC, Carducci MA, Egan J, Dobs AS. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 2006;106:581–8.

    Article  CAS  PubMed  Google Scholar 

  31. Holmboe SA, Jensen TK, Linneberg A, Scheike T, Thuesen BH, Skakkebaek NE, et al. Low testosterone: a risk marker rather than a risk factor for type 2 diabetes. J Clin Endocrinol Metab. 2016;101:3180–90.

    Article  CAS  PubMed  Google Scholar 

  32. Gyawali P, Martin SA, Heilbronn LK, Vincent AD, Taylor AW, Adams RJT, et al. The role of sex hormone-binding globulin (SHBG), testosterone, and other sex steroids, on the development of type 2 diabetes in a cohort of community-dwelling middle-aged to elderly men. Acta Diabetol. 2018;55:861–72.

    Article  CAS  PubMed  Google Scholar 

  33. Ottarsdottir K, Nilsson AG, Hellgren M, Lindblad U, Daka B. The association between serum testosterone and insulin resistance: a longitudinal study. Endocr Connect. 2018;7:1491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soriguer F, Rubio-Martín E, Fernández D, Valdés S, García-Escobar E, Martín-Núñez GM, et al. Testosterone, SHBG and risk of type 2 diabetes in the second evaluation of the Pizarra cohort study. Eur J Clin Invest. 2012;42:79–85.

    Article  CAS  PubMed  Google Scholar 

  35. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295:1288–99.

    Article  CAS  PubMed  Google Scholar 

  36. Gambineri A, Pelusi C. Sex hormones, obesity and type 2 diabetes: is there a link? Endocr Connect. 2019;8:R1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364:273–83.

    Article  CAS  PubMed  Google Scholar 

  38. Ottesen AM, Aksglaede L, Garn I, Tartaglia N, Tassone F, Gravholt CH, et al. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am J Med Genet A. 2010;152A:1206–12.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA, Ferlin A, et al. Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest. 2017;40:123–34.

    Article  CAS  PubMed  Google Scholar 

  40. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39:389–423.

    Article  PubMed  Google Scholar 

  41. Belling K, Russo F, Jensen AB, Dalgaard MD, Westergaard D, Rajpert-De Meyts E, et al. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum Mol Genet. 2017;26:1219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang S, Skakkebæk A, Højbjerg Gravholt C, Gravholt CH. Klinefelter syndrome and medical treatment: hypogonadism and beyond. Hormones. 2015;14:531–48.

    PubMed  Google Scholar 

  43. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a National Registry Study. J Clin Endocrinol Metab. 2003;88:622–6.

    Article  CAS  PubMed  Google Scholar 

  44. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab. 2004;89:6208–17.

    Article  CAS  PubMed  Google Scholar 

  45. Bojesen A, Hertz JM, Gravholt CH. Genotype and phenotype in Klinefelter syndrome - impact of androgen receptor polymorphism and skewed X inactivation. Int J Androl. 2011;34:e642–8.

    Article  CAS  PubMed  Google Scholar 

  46. Tirabassi G, Cignarelli A, Perrini S, delli Muti N, Furlani G, Gallo M, et al. Influence of CAG repeat polymorphism on the targets of testosterone action. Int J Endocrinol. 2015;2015:1–12.

    Article  CAS  Google Scholar 

  47. Tirabassi G, Cutini M, Beltrami B, Delli Muti N, Lenzi A, Balercia G. Androgen receptor GGC repeat might be more involved than CAG repeat in the regulation of the metabolic profile in men. Intern Emerg Med. 2016;11:1067–75.

    Article  PubMed  Google Scholar 

  48. Trzmiel-Bira A, Filus A, Kuliczkowska-Płaksej J, Jóźków P, Słowińska-Lisowska M, Medraś M, et al. The CAG repeat polymorphism in androgen receptor gene repeat and frequency of chosen parameters of metabolic syndrome in 45-65 aged men in Wroclaw population TT - Polimorfizm CAG genu receptora androgenowego a wystepowanie wybranych parametrów zespołu me. Endokrynol Pol. 2008;59:477–82.

    PubMed  Google Scholar 

  49. Zitzmann M, Gromoll J, von Eckardstein A, Nieschlag E. The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men. Diabetologia. 2003;46:31–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tirabassi G, Delli Muti N, Corona G, Maggi M, Balercia G. Androgen receptor gene CAG repeat polymorphism regulates the metabolic effects of testosterone replacement therapy in male postsurgical hypogonadotropic hypogonadism. Int J Endocrinol. 2013;2013:816740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Grossmann M, Hoermann R, Wittert G, Yeap BB. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Endocrinol (Oxf). 2015;83:344–51.

    Article  CAS  Google Scholar 

  52. Jørgensen IN, Skakkebaek A, Andersen NH, Pedersen LN, Hougaard DM, Bojesen A, et al. Short QTc interval in males with Klinefelter syndrome-influence of CAG repeat length, body composition, and testosterone replacement therapy. Pacing Clin Electrophysiol. 2015;38:472–82.

    Article  PubMed  Google Scholar 

  53. Høst C, Bojesen A, Frystyk J, Flyvbjerg A, Christiansen JS, Gravholt CH. Effect of sex hormone treatment on circulating adiponectin and subforms in Turner and Klinefelter syndrome. Eur J Clin Investig. 2010;40:211–9.

    Article  CAS  Google Scholar 

  54. Kelly DM, Jones TH. Testosterone and obesity. Obes Rev. 2015;16:581–606.

    Article  CAS  PubMed  Google Scholar 

  55. Frederiksen L, Højlund K, Hougaard DM, Brixen K, Andersen M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Dordr). 2012;34:145–56.

    Article  CAS  Google Scholar 

  56. Gibney J, Wolthers T, Johannsson G, Umpleby AM, Ho KKY. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. Am J Physiol Metab. 2005;289:E266–71.

    CAS  Google Scholar 

  57. Birzniece V, Meinhardt UJ, Handelsman DJ, Ho KKY. Testosterone stimulates extra-hepatic but not hepatic fat oxidation (Fox): comparison of oral and transdermal testosterone administration in hypopituitary men. Clin Endocrinol (Oxf). 2009;71:715–21.

    Article  CAS  Google Scholar 

  58. Mauras N. Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab. 1998;83:1886–92.

    CAS  PubMed  Google Scholar 

  59. Yialamas MA, Dwyer AA, Hanley E, Lee H, Pitteloud N, Hayes FJ. Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2007;92:4254–9.

    Article  CAS  PubMed  Google Scholar 

  60. Groth KA, Skakkebæk A, Høst C, Gravholt CH, Bojesen A. Clinical review: Klinefelter syndrome--a clinical update. J Clin Endocrinol Metab. 2013;98:20–30.

    Article  CAS  PubMed  Google Scholar 

  61. Giagulli VA, Carbone MD, Ramunni MI, Licchelli B, De Pergola G, Sabbà C, et al. Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology. 2015;3:1094–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giorgino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cignarelli, A., Perrini, S., Giorgino, F. (2020). Lipids and Glucose Metabolism. In: Garolla, A., Corona, G. (eds) Klinefelter’s Syndrome. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-51410-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51410-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51409-9

  • Online ISBN: 978-3-030-51410-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics