Skip to main content

Sensor-Based Benchmark Datasets: Comparison and Analysis

  • Chapter
  • First Online:
IoT Sensor-Based Activity Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 173))

Abstract

Human Activity Recognition (HAR) using installed sensors has made renowned progress in the field of pattern recognition and human-computer interaction. To make efficient machine learning models, researchers need publicly available benchmark datasets. In this chapter, we have bestowed a comprehensive survey on sensor-based benchmark datasets. We have not considered RGB or RGB-Depth video-based action or activity-related datasets in this book. We have performed a complete analysis of benchmark datasets, that incorporates information about sensors, attributes, activity classes, etc. These datasets sum up a good number of sensor-based daily activities, medical activities, fitness activities, device usage, fall detection, transportation activity, and hand gesture data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ps.ewi.utwente.nl/Datasets.php.

  2. 2.

    http://hasc.jp/.

  3. 3.

    Cooking Activity Challenge with International Conference on Activity and Behavior Computing (ABC), 2020 https://abc-research.github.io/cook2020.

  4. 4.

    http://www.cs.ucr.edu/~eamonn/time_series_data/.

  5. 5.

    https://www.physionet.org/physiobank.

  6. 6.

    http://crawdad.org/.

  7. 7.

    Cooking Activity Challenge with International Conference on Activity and Behavior Computing (ABC), 2020 https://abc-research.github.io/cook2020.

References

  1. Antar, A.D., Ahad, M.A.R., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. IEEE CVPR Workshop (2019)

    Google Scholar 

  2. Ahad, M.A.R.: Vision and sensor based human activity recognition: challenges ahead (2020)

    Google Scholar 

  3. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 134–139. IEEE (2019)

    Google Scholar 

  4. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  5. Ahad, M.A.R.: Computer Vision and Action Recognition: a Guide for Image Processing and Computer Vision Community for Action Understanding, vol. 5. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  6. Hossain, T., Islam, M.S., Ahad, M.A.R., Inoue, S.: Human activity recognition using earable device. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 81–84. ACM (2019)

    Google Scholar 

  7. Tazin. T., Hossain, T., Ahad, M.A.R., Inoue, S.: Activity recognition by using lorawan sensor. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  8. Ahmed, M., Antar, A.D., Ahad, M.A.R.: An approach to classify human activities in real-time from smartphone sensor data. In: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR), pp. 140–145 (2019)

    Google Scholar 

  9. Lichman. Uci machine learning repository. http://archive.ics.uci.edu/ml, 2013. Accessed 25 Mar 2019

  10. Hossain, T., Goto, H., Ahad, M.A.R., Inoue, S.: A study on sensor-based activity recognition having missing data. In: 2018 Joint 7th International Conference on Informatics, Electronics and Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 556–561. IEEE (2018)

    Google Scholar 

  11. Ahad, M.A.R., Hossain, T., Tazin. T., Inoue, S.: Study of lorawan technology for activity recognition. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  12. Savvaki, S., Tsagkatakis, G., Panousopoulou, A., Tsakalides, P.: Matrix and tensor completion on a human activity recognition framework. IEEE J. Biomed. Health Inf. 21(6), 1554–1561 (2017)

    Article  Google Scholar 

  13. Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S.T., Tröster, G., del R Millán, J., Roggen, D.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 34(15), 2033–2042 (2013)

    Google Scholar 

  14. Akhavian, R., Behzadan, A.: Wearable sensor-based activity recognition for data-driven simulation of construction workers’ activities. In: 2015 Winter Simulation Conference (WSC), pp. 3333–3344. IEEE (2015)

    Google Scholar 

  15. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Article  Google Scholar 

  16. Wang, L., Gu, T., Tao, X., Lu., J.: Sensor-based human activity recognition in a multi-user scenario. In: European Conference on Ambient Intelligence, pp. 78–87. Springer (2009)

    Google Scholar 

  17. Pham, C., Diep, N.N., Phuong, T.M.: A wearable sensor based approach to real-time fall detection and fine-grained activity recognition. J. Mob. Multimedia 9(1&2), 15–26 (2013)

    Google Scholar 

  18. Tao, G., Wang, L., Zhanqing, W., Tao, X., Jian, L.: A pattern mining approach to sensor-based human activity recognition. IEEE Trans. Knowl. Data Eng. 23(9), 1359–1372 (2010)

    Google Scholar 

  19. Blunck, H., Bhattacharya, S., Stisen, A., Prentow, T.S., Kjærgaard, M.B., Dey, A., Jensen, M.M., Sonne, T.: Activity recognition on smart devices: dealing with diversity in the wild. GetMobile: Mob. Comput. Commun. 20(1), 34–38 (2016)

    Google Scholar 

  20. Torres, R.L.S., Ranasinghe, D.C., Shi, Q., Sample, A.P.: Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In: 2013 IEEE International Conference on RFID (RFID), pp. 191–198. IEEE (2013)

    Google Scholar 

  21. Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016)

    Article  Google Scholar 

  22. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  23. Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016)

    Article  Google Scholar 

  24. Casale, P., Pujol, O., Radeva, P.: Personalization and user verification in wearable systems using biometric walking patterns. Person. Ubiquitous Comput. 16(5), 563–580 (2012)

    Article  Google Scholar 

  25. Ordónez, F.J., de Toledo, P., Sanchis, A.: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 13(5), 5460–5477 (2013)

    Article  Google Scholar 

  26. Baños, O., Damas, M., Pomares, H., Rojas, I., Tóth, M.A., Amft, O.: A benchmark dataset to evaluate sensor displacement in activity recognition. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 1026–1035. ACM (2012)

    Google Scholar 

  27. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers (ISWC), pp. 108–109. IEEE (2012)

    Google Scholar 

  28. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit. 43(10), 3605–3620 (2010)

    Article  MATH  Google Scholar 

  29. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. Appl. 24(6), 1451–1464 (2014)

    Article  Google Scholar 

  30. Banos, O., Garcia, R., Holgado-Terriza, J.A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C.: Mhealthdroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living, pp. 91–98. Springer (2014)

    Google Scholar 

  31. Weiss, G.M., Yoneda, K., Hayajneh, T.: Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access 7, 133190–133202 (2019)

    Article  Google Scholar 

  32. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In: Proceedings of the 2018 on International Conference on Multimodal Interaction, pp. 400–408. ACM (2018)

    Google Scholar 

  33. Özdemir, A., Barshan, B.: Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6), 10691–10708 (2014)

    Article  Google Scholar 

  34. Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T., Zaccaria, R.: Analysis of human behavior recognition algorithms based on acceleration data. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1602–1607. IEEE (2013)

    Google Scholar 

  35. Shoaib, M., Scholten, H., Havinga, P.J.M., Incel, O.D.: A hierarchical lazy smoking detection algorithm using smartwatch sensors. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2016)

    Google Scholar 

  36. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors 16(4), 426 (2016)

    Article  Google Scholar 

  37. Shoaib, M., Scholten, H., Havinga, P.J.M.: Towards physical activity recognition using smartphone sensors. In: Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), pp. 80–87. IEEE (2013)

    Google Scholar 

  38. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014)

    Article  Google Scholar 

  39. Hasc2010 corpus. http://hasc.jp. Accessed 27 Mar 2019

  40. Kawaguchi, N., Yang, Y., Yang, T., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., Inoue, S., Kawahara, Y. et al.: Hasc2011corpus: towards the common ground of human activity recognition. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 571–572. ACM (2011)

    Google Scholar 

  41. Kawaguchi, N., Watanabe, H., Yang, T., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., Hada, H., Inoue, S., et al. Hasc2012corpus: large scale human activity corpus and its application. In: Proceedings of the Second International Workshop of Mobile Sensing: From Smartphones and Wearables to Big Data, pp. 10–14 (2012)

    Google Scholar 

  42. Kaji, K., Watanabe, H., Ban, R., Kawaguchi, N.: Hasc-ipsc: indoor pedestrian sensing corpus with a balance of gender and age for indoor positioning and floor-plan generation researches. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 605–610. ACM (2013)

    Google Scholar 

  43. Ichino, H., Kaji, K., Sakurada, K., Hiroi, K., Kawaguchi, N.: Hasc-pac2016: large scale human pedestrian activity corpus and its baseline recognition. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 705–714. ACM (2016)

    Google Scholar 

  44. Matsuyama, H., Hiroi, K., Kaji, K., Yonezawa, T., Kawaguchi, N.: Ballroom dance step type recognition by random forest using video and wearable sensor. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 774–780. ACM (2019)

    Google Scholar 

  45. Hossain, T., Mairittha, T., Mairittha, N., Inoue, S., Lago, P.: Integrating activity recognition and nursing care records: the system, deployment, and a verification study. Proc. ACM Interact., Mob., Wear. Ubiquitous Technol. 3(86) (2019)

    Google Scholar 

  46. Bachlin, M., Plotnik, M., Roggen, D., Maidan, I., Hausdorff, J.M., Giladi, N., Troster, G.: Wearable assistant for parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14(2), 436–446 (2010)

    Article  Google Scholar 

  47. Inoue, S., Ueda, N., Nohara, Y., Nakashima, N.: Recognizing and understanding nursing activities for a whole day with a big dataset. J. Inf. Process. 24(6), 853–866 (2016)

    Google Scholar 

  48. Predicting Parkinson’s disease progression with smartphone data. https://www.kaggle.com/c/3300/download/Participant. Accessed 27 Mar 2019

  49. Forster, K., Roggen, D., Troster, G.: Unsupervised classifier self-calibration through repeated context occurences: Is there robustness against sensor displacement to gain? In: International Symposium on Wearable Computers, 2009. ISWC’09, pp. 77–84. IEEE (2009)

    Google Scholar 

  50. Bächlin, M., Förster, K., Tröster, G.: Swimmaster: a wearable assistant for swimmer. In: Proceedings of the 11th International Conference on Ubiquitous Computing, pp. 215–224. ACM (2009)

    Google Scholar 

  51. Crowd-sourced fitbit datasets. Crowd-Sourced-Fitbit-Datasets (2016). Accessed 27 Mar 2019

    Google Scholar 

  52. Takata, M., Nakamura, Y., Fujimoto, M., Arakawa, Y., Yasumoto, K.: Investigating the effect of sensor position for training type recognition in a body weight training support system. In: Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 1–5. ACM (2018)

    Google Scholar 

  53. Alemdar, H., Ertan, H., Incel, O.D., Ersoy, C.: Aras human activity datasets in multiple homes with multiple residents. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 232–235. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2013)

    Google Scholar 

  54. Tapia, E.M., Intille, S.S., Lopez, L., Larson, K.: The design of a portable kit of wireless sensors for naturalistic data collection. In: International Conference on Pervasive Computing, pp. 117–134. Springer, 2006

    Google Scholar 

  55. De la Torre, F., Hodgins, J., Bargteil, A., Martin, X., Macey, J., Collado, A., Beltran, P.: Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database. Robotics Institute, p. 135 (2008)

    Google Scholar 

  56. Chen, L., Nugent, C.D., Biswas, J., Hoey, J.: Activity Recognition in Pervasive Intelligent Environments, vol. 4. Springer Science & Business Media, Berlin (2011)

    MATH  Google Scholar 

  57. Gani, M.O., Saha, A.K., Ahsan, G.M.T., Ahamed, S.I., Smith, R.O.: A novel framework to recognize complex human activity. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 948–956. IEEE (2017)

    Google Scholar 

  58. Cook, D.J.: Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 27(1), 32–38 (2012)

    Article  Google Scholar 

  59. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: International Conference on Pervasive Computing, pp. 158–175. Springer (2004)

    Google Scholar 

  60. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 10–19. ACM (2008)

    Google Scholar 

  61. Activity classification. https://www.kaggle.com. Accessed 28 Mar 2019

  62. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Person. Ubiquitous Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  63. Laurila, J.K., Gatica-Perez, D., Aad, I., Bornet, O., Do, T.-M.-T., Dousse, O., Eberle, J., Miettinen, M. et al.: The mobile data challenge: Big data for mobile computing research. In: Pervasive Computing, Number EPFL-CONF-192489 (2012)

    Google Scholar 

  64. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: large-scale mobile data collection. ACM SIGMETRICS Perform. Eval. Rev. 41(4), 53–56 (2014)

    Article  Google Scholar 

  65. Rawassizadeh, R., Tomitsch, M., Nourizadeh, M., Momeni, E., Peery, A., Ulanova, L., Pazzani, M.: Energy-efficient integration of continuous context sensing and prediction into smartwatches. Sensors 15(9), 22616–22645 (2015)

    Article  Google Scholar 

  66. Zhang, M., Sawchuk, A.A.: USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 1036–1043. ACM (2012)

    Google Scholar 

  67. Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human actions using wearable motion sensor networks. J. Ambient Intell. Smart Environ. 1(2), 103–115 (2009)

    Article  Google Scholar 

  68. Stiefmeier, T., Roggen, D., Troster, G.: Fusion of string-matched templates for continuous activity recognition. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 41–44. IEEE (2007)

    Google Scholar 

  69. Wirz, M., Roggen, D., Troster, G.: Decentralized detection of group formations from wearable acceleration sensors. In: International Conference on Computational Science and Engineering, 2009. CSE’09, vol. 4, pp. 952–959. IEEE (2009)

    Google Scholar 

  70. Saha, S.S., Rahman, S., Rasna, M.J., Zahid, T.B., Mahfuzul Islam, A.K.M., Ahad, M.A.R.: Feature extraction, performance analysis and system design using the du mobility dataset. IEEE Access 6, 44776–44786 (2018)

    Google Scholar 

  71. Saha, S.S., Rahman, S., Rasna, M.J., Mahfuzul Islam, A.K.M., Ahad, M.A.R., DU-MD: an open-source human action dataset for ubiquitous wearable sensors. In: Joint 7th International Conference on Informatics, Electronics and Vision; 2nd International Conference on Imaging, Vision and Pattern Recognition (2018)

    Google Scholar 

  72. Chereshnev, R., Kertész-Farkas, A.: Hugadb: Human gait database for activity recognition from wearable inertial sensor networks. In: International Conference on Analysis of Images, Social Networks and Texts, pp. 131–141. Springer (2017)

    Google Scholar 

  73. Chen, C., Jafari, R., Kehtarnavaz, N.: Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 168–172. IEEE (2015)

    Google Scholar 

  74. Ngo, T.T.,, Ahad, M.A.R., Antar, A.D., Ahmed, M., Muramatsu, D.,Makihara, Y., Yagi, Y., Inoue, S., Hossain, T., Hattori, Y.: Ou-isir wearable sensor-based gait challenge: age and gender. In: Proceedings of the 12th IAPR International Conference on Biometrics, ICB (2019)

    Google Scholar 

  75. Antar, A.D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., Yagi, Y., Ahad, M.A.R., Ngo, T.T.: Wearable sensor-based gait analysis for age and gender estimation (2020)

    Google Scholar 

  76. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  77. Faye, S., Louveton, N., Jafarnejad, S., Kryvchenko, R., Engel, T.: An open dataset for human activity analysis using smart devices (2017)

    Google Scholar 

  78. Ngo, T.T., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recognit. 47(1), 228–237 (2014)

    Article  Google Scholar 

  79. Gjoreski, H., Kaluža, B., Gams, M., Milić, R., Luštrek, M.: Context-based ensemble method for human energy expenditure estimation. Appl. Soft Comput. 37, 960–970 (2015)

    Article  Google Scholar 

  80. Suhr, J.K., Jung, H.G.: Automatic parking space detection and tracking for underground and indoor environments. IEEE Trans. Indust. Electron. 63(9), 5687–5698 (2016)

    Article  Google Scholar 

  81. Mekki, S., Karagkioules, T., Valentin, S.: Context-aware adaptive video streaming for mobile users. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 988–989. IEEE (2017)

    Google Scholar 

  82. Mekki, S., Karagkioules, T.: Http adaptive streaming with indoors-outdoors detection in mobile networks. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 671–676. IEEE (2017)

    Google Scholar 

  83. Gjoreski, H., Ciliberto, M., Wang, L., Morales, F.J.O., Mekki, S., Valentin, S., Roggen, D.: The university of sussex-huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access (2018)

    Google Scholar 

  84. Ahmed, M., Antar, A.D., Hossain, T., Inoue, S., Ahad, M.A.R.: Poiden: position and orientation independent deep ensemble network for the classification of locomotion and transportation modes. pp. 674–679 (2019)

    Google Scholar 

  85. Antar, A.D., Ahmed, M., Ishrak, M.S., Ahad, M.A.R.: A comparative approach to classification of locomotion and transportation modes using smartphone sensor data. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1497–1502 (2018)

    Google Scholar 

  86. Rasna, M.J., Hossain, T., Inoue, S., Sha, S.S., Rahman, S., Ahad, M.A.R.: Supervised and neural classifiers for locomotion analysis. 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  87. Yang, J.: Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In: Proceedings of the 1st International Workshop on Interactive Multimedia for Consumer Electronics, pp. 1–10. ACM (2009)

    Google Scholar 

  88. Zheng, Y., Xie, X., Ma, W.-Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  89. Wang, S., Chen, C., Ma, J.: Accelerometer based transportation mode recognition on mobile phones. In: 2010 Asia-Pacific Conference on Wearable Computing Systems (APWCS), pp. 44–46. IEEE (2010)

    Google Scholar 

  90. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. (TOSN) 6(2), 13 (2010)

    Google Scholar 

  91. Siirtola, P., Röning, J.: Recognizing human activities user-independently on smartphones based on accelerometer data. IJIMAI 1(5), 38–45 (2012)

    Article  Google Scholar 

  92. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, p. 13. ACM (2013)

    Google Scholar 

  93. Zhang, Z., Poslad, S.: A new post correction algorithm (pocoa) for improved transportation mode recognition. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1512–1518. IEEE (2013)

    Google Scholar 

  94. Xia, H., Qiao, Y., Jian, J., Chang, Y.: Using smart phone sensors to detect transportation modes. Sensors 14(11), 20843–20865 (2014)

    Article  Google Scholar 

  95. Yu, M.-C., Yu, T., Wang, S.-C., Lin, C.-J., Chang, E.Y.: Big data small footprint: the design of a low-power classifier for detecting transportation modes. Proc. VLDB Endow. 7(13), 1429–1440 (2014)

    Article  Google Scholar 

  96. Widhalm, P., Nitsche, P., Brändie, N.: Transport mode detection with realistic smartphone sensor data. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 573–576. IEEE (2012)

    Google Scholar 

  97. Jahangiri, A., Rakha, H.A.: Applying machine learning techniques to transportation mode recognition using mobile phone sensor data. IEEE Trans. Intell. Transp. Syst. 16(5), 2406–2417 (2015)

    Article  Google Scholar 

  98. Xing, S., Caceres, H., Tong, H., He, Q.: Online travel mode identification using smartphones with battery saving considerations. IEEE Trans. Intell. Transp. Syst. 17(10), 2921–2934 (2016)

    Article  Google Scholar 

  99. Gjoreski, H., Ciliberto, M., Wang, L., Morales, F.J.O., Mekki, S., Valentin, S., Roggen, D.: The university of sussex-huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access 6, 42592–42604 (2018)

    Article  Google Scholar 

  100. Islam, M.Z., Serikawa, S., Islam, Z.Z., Tazwar, S.M., Ahad, M.A.R.: Automatic fall detection system of unsupervised elderly people using smartphone. In: Annual Conference on Artificial Intelligence. IEEE (2017)

    Google Scholar 

  101. Casilari, E., Santoyo-Ramón, J.-A., Cano-García, J.-M.: Analysis of public datasets for wearable fall detection systems. Sensors 17(7), 1513 (2017)

    Article  Google Scholar 

  102. Frank, K., Nadales, M.J.V., Robertson, P., Pfeifer, T.: Bayesian recognition of motion related activities with inertial sensors. In: Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing-Adjunct, pp. 445–446. ACM (2010)

    Google Scholar 

  103. Vavoulas, G., Pediaditis, M., Spanakis, E.G., Tsiknakis, M.: The mobifall dataset: an initial evaluation of fall detection algorithms using smartphones. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2013)

    Google Scholar 

  104. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  105. Medrano, C., Igual, R., Plaza, I., Castro, M.: Detecting falls as novelties in acceleration patterns acquired with smartphones. PloS one 9(4), e94811 (2014)

    Article  Google Scholar 

  106. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a kinect® sensor. Sensors 14(2), 2756–2775 (2014)

    Article  Google Scholar 

  107. Ojetola, O., Gaura, E., Brusey, J.: Data set for fall events and daily activities from inertial sensors. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 243–248. ACM (2015)

    Google Scholar 

  108. Vilarinho, T., Farshchian, B., Bajer, D.G., Dahl, O.H., Egge, I., Hegdal, S.S., Lønes, A., Slettevold, J.N., Weggersen, S.M.: A combined smartphone and smartwatch fall detection system. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 1443–1448. IEEE (2015)

    Google Scholar 

  109. Micucci, D., Mobilio, M., Napoletano, P.: Unimib shar: a dataset for human activity recognition using acceleration data from smartphones. Appl. Sci. 7(10), 1101 (2017)

    Article  Google Scholar 

  110. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection. PLoS one 11(12), e0168069 (2016)

    Article  Google Scholar 

  111. Vavoulas, G., Chatzaki, C., Malliotakis, T., Pediaditis, M., Tsiknakis, M.: The mobiact dataset: recognition of activities of daily living using smartphones. In: ICT4AgeingWell, pp. 143–151 (2016)

    Google Scholar 

  112. Sucerquia, A., López, J.D., Vargas-Bonilla, J.F.: Sisfall: a fall and movement dataset. Sensors 17(1), 198 (2017)

    Article  Google Scholar 

  113. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The ucr time series classification archive (2015). www.cs.ucr.edu/eamonn/time_series_data

  114. Goldberger, A.L.: Physiobank, physiotoolkkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  115. Kotz, D., Henderson, T.: Crawdad: a community resource for archiving wireless data at dartmouth. IEEE Pervas. Comput. 4(4), 12–14 (2005)

    Article  Google Scholar 

  116. Syeda, U.H., Zafar, Z., Islam, Z.Z., Tazwar, S.M., Rasna, M.J., Kise, K., Ahad, M.A.R.: Visual face scanning and emotion perception analysis between autistic and typically developing children. In: ACM UbiComp Workshop on Mental Health and Well-being: Sensing and Intervention. ACM (2017)

    Google Scholar 

  117. Rahaman, N., Islam, A., Ahad, M.A.R.: A study on tiredness assessment by using eye blink detection, pp. 209–214 (2019)

    Google Scholar 

  118. Noman, M.T.N., Ahad, M.A.R.: Mobile-based eye-blink detection performance analysis on android platform (2018)

    Google Scholar 

  119. Kawsar, F., Min, C., Mathur, A., Montanari, A.: Earables for personal-scale behavior analytics. IEEE Pervas. Comput. 17(3), 83–89 (2018)

    Article  Google Scholar 

  120. Noman, M.T.N., Hussein, M.A.H., Ahad, M.A.R.: A study on tiredness measurement using computer vision, pp. 110–117 (2019)

    Google Scholar 

  121. Irtija, M.S.N., Ahad, M.A.R.: Fatigue detection using facial landmarks. In: 4th International Symposium on Affective Science and Engineering, and the 29th Modern Artificial Intelligence and Cognitive Science Conference (ISASE-MAICS) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahad, M.A.R., Antar, A.D., Ahmed, M. (2021). Sensor-Based Benchmark Datasets: Comparison and Analysis. In: IoT Sensor-Based Activity Recognition. Intelligent Systems Reference Library, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-51379-5_6

Download citation

Publish with us

Policies and ethics