Skip to main content

Devices and Application Tools for Activity Recognition: Sensor Deployment and Primary Concerns

  • Chapter
  • First Online:
IoT Sensor-Based Activity Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 173))

  • 747 Accesses

Abstract

Sensory modality is a primary concern in sensor-based activity recognition research. The usage of wearable devices and utilizing embedded smartphone sensor data to recognize daily activities has become famous in this research field nowadays. This chapter deals with the challenges of choosing an appropriate sensing device and application tools for data collection. Sensing devices used in previous activity recognition research works have been described in detail with their hardware and software specification. Finally, the description and parameters of some important sensors (accelerometer, gyroscope, etc.) have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antar, A.D., Ahad, M.A.R., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. In: IEEE CVPR Workshop (2019)

    Google Scholar 

  2. Ahad, M.A.R.: Vision and sensor based human activity recognition: challenges ahead (2020)

    Google Scholar 

  3. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 134–139. IEEE (2019)

    Google Scholar 

  4. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  5. Ahad, M.A.R.: Computer Vision and Action Recognition: a Guide for Image Processing and Computer Vision Community for Action Understanding, vol. 5. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  6. Hossain, T., Islam, M.S., Ahad, M.A.R., Inoue, S.: Human activity recognition using earable device. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 81–84. ACM (2019)

    Google Scholar 

  7. Tazin, T., Hossain, T., Ahad, M.A.R., Inoue S.: Activity recognition by using lorawan sensor. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  8. Ahmed, M., Antar, A.D., Ahad, M.A.R.: An approach to classify human activities in real-time from smartphone sensor data. In: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR), pp. 140–145 (2019)

    Google Scholar 

  9. Motionnode IMU platform. http://www.motionnode.com/. Accessed 20 Mar 2019

  10. Park, C., Liu, J., Chou, P.H.: Eco: an ultra-compact low-power wireless sensor node for real-time motion monitoring. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 54. IEEE Press (2005)

    Google Scholar 

  11. Beigl, M., Decker, C., Krohn, A., Riedel, T., Zimmer, T.: \(\mu \)parts: low cost sensor networks at scale. In: Ubicomp 2005. Citeseer (2005)

    Google Scholar 

  12. Kawsar, F., Min, C., Mathur, A., Montanari, A.: Earables for personal-scale behavior analytics. IEEE Pervas. Comput. 17(3), 83–89 (2018)

    Article  Google Scholar 

  13. Tapia, EM., Marmasse, N., Intille, S.S., Larson, K.: Mites: Wireless portable sensors for studying behavior. In: Proceedings of Extended Abstracts Ubicomp 2004: Ubiquitous Computing (2004)

    Google Scholar 

  14. Mica2dot wireless microsensor mote. https://www.willow.co.uk/mpr5x0-_mica2dot_series.php, (2005). Accessed 22 Mar 2019

  15. Micaz wireless measurement system. http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/MPR2400.html (2005). Accessed 22 Mar 2019

  16. Kling, R.M. et al.: Intel mote: an enhanced sensor network node. In: International Workshop on Advanced Sensors, Structural Health Monitoring, and Smart Structures, pp. 12–17 (2003)

    Google Scholar 

  17. Moteiv. tmote sky: Ultra low power IEEE 802.15.4 compliant wireless sensor module. http://www.moteiv.com/products/docs/tmote-skydatasheet.pdf (2005). Accessed 22 Mar 2019

  18. Beigl, M., Gellersen, H.: Smart-its: An embedded platform for smart objects. In: Smart Objects Conference (sOc), vol. 2003 (2003)

    Google Scholar 

  19. Luna nurse. http://www.g-mark.org/award/describe/41326?locale=en. Accessed 22 Mar 2019

  20. Google glass app. http://glass-apps.org/google-glass-application-list. Accessed 22 Mar 2019

  21. Cc2650 sensortag. http://processors.wiki.ti.com/index.php/CC2650_SensorTag_User’s_Guide. Accessed 23 Mar 2019

  22. Device analyzer. http://deviceanalyzer.cl.cam.ac.uk/. Accessed 23 Mar 2019

  23. Smart wearable clothes. https://www.wareable.com/smart-clothing/best-smart-clothing. Accessed 23 Mar 2019

  24. Magic (maglietta interattiva computerizzata). http://www.ncbi.nlm.nih.gov/pubmed/20421189. Accessed 25 Mar 2019

  25. Cyberglove 2. http://www.cyberglovesystems.com/products/cybergl Accessed 25 Mar 2019

  26. Bellabeat. http://gadgetsandwearables.com/bellabeat/. Accessed 25 Mar 2019

  27. Fitness trackers and smart watches. https://www.cnet.com/topics/wearable-tech/buying-guide/. Accessed 25 Mar 2019

  28. Hasc tool and hasc logger. http://hasc.jp/tools/hasctool-en.html. Accessed 25 Mar 2019

  29. The lorawan sensor. https://www.decentlab.com/lorawan/. Accessed 02 Mar 2019

  30. Ahad, M.A.R., Hossain, T., Tazin, T., Inoue, S.: Study of lorawan technology for activity recognition. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  31. Dobbelstein, D., Arnold, T., Rukzio, E.: Snapband: a flexible multi-location touch input band. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 214–215. ACM (2018)

    Google Scholar 

  32. Auda, J., Hoppe, M., Amiraslanov, O., Zhou, B., Knierim, P., Schneegass, S., Schmidt, A., Lukowicz, P.: Lyra: smart wearable in-flight service assistant. In: Iswc’18: Proceedings of the 2018 Acm International Symposium on Wearable Computers. Association for Computing Machinery, pp. 212–213 (2018)

    Google Scholar 

  33. Thar, J., Stönner, S., Heller, F., Borchers, J.: Yawn: yet another wearable toolkit. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 232–233. ACM (2018)

    Google Scholar 

  34. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D. Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150

    Google Scholar 

  35. Kavanagh, J.J., Menz,H.B.: A technique for quantifying movement patterns during walking. In: Gait and Posture, pp. 1–15 (2008)

    Google Scholar 

  36. Zheng, Y., Wong, W.-K., Guan, X., Trost, S.: Physical activity recognition from accelerometer data using a multi-scale ensemble method. In: Twenty-Fifth Annual Conference on Innovative Applications of Artificial Intelligence. IAAI (2013)

    Google Scholar 

  37. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. In: Medicine and Science in Sports and Exercise (2013)

    Google Scholar 

  38. Wu, J., Gang, P., Daqing, Z., Guande, Q., Shijian, L.: Gesture Recognition with a 3-d Accelerometer. Ubiquitous Intelligence and Computing, pp. 25–38. Springer, Berlin (2009)

    Google Scholar 

  39. Reyes-Ortiz, J.-L., Oneto, L., Ghio, A., Sama, A., Anguita, D., Parra, X.: Human activity recognition on smartphones with awareness of basic activities and postural transitions. In: International Conference on Artificial Neural Networks, pp. 177–184 (2014)

    Google Scholar 

  40. Bahle, G., Gruenerbl, A., Lukowicz, P., Bignotti, E., Zeni, M., Giunchiglia, F.: Recognizing hospital care activities with a coat pocket worn smartphone. In: 6th International Conference on Mobile Computing, Applications and Services (MobiCASE), IEEE, pp. 175–181 (2014)

    Google Scholar 

  41. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1297–1304. IEEE (2011)

    Google Scholar 

  42. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: International Conference on Pervasive Computing, pp. 158–175. Springer, Berlin (2004)

    Google Scholar 

  43. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.J., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50(6), 711–723 (2003)

    Article  Google Scholar 

  44. The house of the future. http://architecture.mit.edu/house_n. Accessed 02 Mar 2019

  45. The gator-tech smart house. http://www.icta.ufl.edu/gt.htm. Accessed 02 Mar 2019

  46. The inhaus project in germany. http://www.inhaus.fraunhofer.de/. Accessed 02 Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahad, M.A.R., Antar, A.D., Ahmed, M. (2021). Devices and Application Tools for Activity Recognition: Sensor Deployment and Primary Concerns. In: IoT Sensor-Based Activity Recognition. Intelligent Systems Reference Library, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-51379-5_5

Download citation

Publish with us

Policies and ethics