Skip to main content

Methodology of Activity Recognition: Features and Learning Methods

  • Chapter
  • First Online:
IoT Sensor-Based Activity Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 173))

Abstract

Sensor-based Human Activity Recognition (HAR) has been explored by many research communities and industries for various applications. Conventional pattern recognition approaches based on handcrafted features contributed a lot in this research field by employing general classification approaches. This chapter represents those handcrafted features in time and frequency domain along with their importance and feature selection methods. Following these methods, this chapter provides explanations of several conventional machine learning techniques for classifying sensor data for activity recognition. The problems of overfitting and underfitting have been discussed with remedies. Previous research works using conventional pattern recognition (PR) approaches on some benchmark datasets have also been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antar, A.D., Ahad, M.A.R., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. IEEE CVPR Workshop (2019)

    Google Scholar 

  2. Ahad, M.A.R.: Vision and sensor based human activity recognition: challenges ahead (2020)

    Google Scholar 

  3. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 134–139. IEEE, Washington, D.C. (2019)

    Google Scholar 

  4. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  5. Ahad, M.A.R.: Computer Vision and Action Recognition: A Guide for Image Processing and Computer Vision Community for Action Understanding, vol. 5. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  6. Rafiuddin, N., Khan, Y.U., Farooq, O.: Feature extraction and classification of eeg for automatic seizure detection. In: Multimedia, Signal Processing and Communication Technologies (IMPACT), 2011 International Conference on, pp. 184–187. IEEE, Aligarh (2011)

    Google Scholar 

  7. Veltink, P.H., Bussmann, H.B.J., de Vries, W., Martens, W.L.J., van Lummel, R.C.: Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans. Rehabil. Eng. 4, 375–385 (1996)

    Article  Google Scholar 

  8. Hossain, T., Goto, H., Ahad, M.A.R., Inoue, S.: A study on sensor-based activity recognition having missing data. In: 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 556–561. IEEE, Kitakyushu (2018)

    Google Scholar 

  9. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Patt. Recogn. 43(10), 3605–3620 (2010)

    Google Scholar 

  10. Saha, S.S., Rahman, S., Rasna, M.J., Zahid, T.B., Mahfuzul Islam, A.K.M., Ahad, M.A.R.: Feature extraction, performance analysis and system design using the du mobility dataset. IEEE Access 6, 44776–44786 (2018)

    Google Scholar 

  11. Rasna, M.J., Hossain, T., Inoue, S., Sha, S.S., Rahman, S., Ahad, M.A.R.: Supervised and neural classifiers for locomotion analysis. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  12. Hossain, T., Islam, M.S., Ahad, M.A.R., Inoue, S.: Human activity recognition using earable device. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 81–84. ACM, New York (2019)

    Google Scholar 

  13. Bouten, C.V.C., Koekkoek, K.T.M., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44(3), 136–147 (1997). March

    Article  Google Scholar 

  14. Antar, A.D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., Yagi, Y., Ahad, M.A.R., Ngo, T.T.: Wearable sensor-based gait analysis for age and gender estimation (2020)

    Google Scholar 

  15. Tazin, T., Hossain, T., Ahad, M.A.R., Inoue, S.: Activity recognition by using lorawan sensor. In: 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC) (2018)

    Google Scholar 

  16. Pirttikangas, S., Fujinami, K., Nakajima, T.: Feature selection and activity recognition from wearable sensors. In: Youn, H.Y., Kim, M., Morikawa, H., (eds.) Ubiquitous Computing Systems, pp. 516–527. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  17. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015)

    Article  Google Scholar 

  18. Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable sensor badge and sensor jacket for context awareness. In: Digest of Papers. Third International Symposium on Wearable Computers, pp. 107–113 (1999)

    Google Scholar 

  19. Oliphant, T.: Guide to Numpy. Tregol Publishing (2006)

    Google Scholar 

  20. Sekine, M., Tamura, T., Fujimoto, T., Fukui, Y.: Classification of walking pattern using acceleration waveform in elderly people. In: Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, vol. 2, pp. 1356–1359. IEEE (2000)

    Google Scholar 

  21. Randell, C., Muller, H.: Context awareness by analysing accelerometer data. In: Wearable Computers, The Fourth International Symposium on, pp. 175–176. IEEE (2000)

    Google Scholar 

  22. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence (IAAI) (2005)

    Google Scholar 

  23. Machado, I.P.: Human activity data discovery based on accelerometry (2013)

    Google Scholar 

  24. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, pp. 1–17. Springer, Berlin (2004)

    Google Scholar 

  25. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control (1976)

    Google Scholar 

  26. Schmidt, A., Van Laerhoven, K.: How to build smart appliances? IEEE Pers. Commun. 8(4), 66–71 (2001)

    Article  Google Scholar 

  27. Huile, X., Liu, J., Haibo, H., Zhang, Y.: Wearable sensor-based human activity recognition method with multi-features extracted from hilbert-huang transform. Sensors 16(12), 2048 (2016)

    Article  Google Scholar 

  28. Hamäläinen, W., Järvinen, M., Martiskainen, P., Mononen, J.: Jerk-based feature extraction for robust activity recognition from acceleration data. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 831–836 (2011)

    Google Scholar 

  29. Xueshan, Y., Xiaozhai, Q., Lee, G.C., Tong, M., Jinming,C.: Jerk and jerk sensor 06 (2018)

    Google Scholar 

  30. Hamäläinen, W., Järvinen, M., Martiskainen, P., Mononen, J.: Jerk-based feature extraction for robust activity recognition from acceleration data. In: Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on, pp. 831–836. IEEE, Piscataway, NJ (2011)

    Google Scholar 

  31. Foerster, F., Smeja, M., Fahrenberg, J.: Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput. Hum. Behav. 15, 571–583 (1999)

    Article  Google Scholar 

  32. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Physiological Measurement

    Google Scholar 

  33. Englehart, K., Hudgins, B., Parker, P., Stevenson, M.: Time-frequency representation for classification of the transient myoelectric signal. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), vol. 5, pp. 2627–2630 (1998)

    Google Scholar 

  34. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. Pervasive Computing, pp. 158–175. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  35. Nyan, M.N., Tay, F.E.H., Seah, K.H.W., Sitoh, Y.Y.: Classification of gait patterns in the time-frequency domain. J. Biomech. 39(14), 2647–2656 (2006)

    Article  Google Scholar 

  36. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.J., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50(6), 711–723 (2003)

    Google Scholar 

  37. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological measurement 25(2), R1 (2004)

    Google Scholar 

  38. Makikawa, M., Iizumi, H.: Development of an ambulatory physical activity memory device and its application for the categorization of actions in daily life. Medinfo 8, 747–750 (1995)

    Google Scholar 

  39. Bussmann, J.B.J., Martens, W.L.J., Tulen, J.H.M., Schasfoort, F.C., Van Den Berg-Emons, H.J.G., Stam, H.J.: Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav. Res. Methods Instrum. Comput. 33(3), 349–356 (2001)

    Article  Google Scholar 

  40. Veltink, P.H., Bussmann, H.J., Vries, W.D., Martens, W.J., Van Lummel, R.C.: Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans. Rehabil. Eng. 4(4), 375–385 (1996)

    Google Scholar 

  41. Aminian, K., Ph Robert, E.E., Buchser, B.R., Hayoz, D., Depairon, M.: Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med. Biol. Eng. Comput. 37(3), 304–308 (1999)

    Article  Google Scholar 

  42. Mladenić, D.: Feature selection for dimensionality reduction. In: International Statistical and Optimization Perspectives Workshop Subspace, Latent Structure and Feature Selection, pp. 84–102. Springer, Berlin (2005)

    Google Scholar 

  43. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  44. Jatoba, L.C., Grossmann, U., Kunze, C., Ottenbacher, J., Stork, W.: Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 5250–5253. IEEE, Piscataway, NJ (2008)

    Google Scholar 

  45. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, pp. 4. IEEE, Cambridge, MA (2006)

    Google Scholar 

  46. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, pp. 4–pp. IEEE, Cambridge, MA (2006)

    Google Scholar 

  47. Hira, Z.M., Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 13 (2015)

    Google Scholar 

  48. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Google Scholar 

  49. Miao, J., Niu, L.: A survey on feature selection. Proc. Comput. Sci. 91, 919–926 (2016)

    Article  Google Scholar 

  50. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    Google Scholar 

  51. Chen, X.-W., Jeong, J.C.: Enhanced recursive feature elimination. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp. 429–435. IEEE, Cincinnati, OH (2007)

    Google Scholar 

  52. Talenti, L., Luck, M., Yartseva, A., Argy, N., Houzé, S., Damon, C.: L1 logistic regression as a feature selection step for training stable classification trees for the prediction of severity criteria in imported malaria. arXiv:1511.06663 (2015)

  53. van der Maaten, L., Hinton,G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  54. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018)

  55. Ali, M.U., Ahmed, S., Ferzund, J., Mehmood, A., Rehman, A.: Using pca and factor analysis for dimensionality reduction of bio-informatics data. arXiv:1707.07189 (2017)

  56. Shi, H., Yin, B., Zhang, X., Kang, Y., Lei, Y.: A landmark selection method for l-isomap based on greedy algorithm and its application. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 7371–7376. IEEE, Oskara (2015)

    Google Scholar 

  57. Hall, M.A.: Correlation-based feature selection for machine learning (1999)

    Google Scholar 

  58. Baranauskas, J.A., Netto, O.P., Nozawa, S.R., Macedo, A.A.: A tree-based algorithm for attribute selection. Appl. Intell. 48(4), 821–833 (2018)

    Google Scholar 

  59. Mantyjarvi, J., Himberg, J., Seppanen, T.: Recognizing human motion with multiple acceleration sensors. In: Systems, Man, and Cybernetics, 2001 IEEE International Conference on, vol. 2, pp. 747–752. IEEE, Tucson, AZ (2001)

    Google Scholar 

  60. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pp. 5041–5044. IEEE, San Antonio (2009)

    Google Scholar 

  61. He, Z.-Y., Jin, L.-W.: Activity recognition from acceleration data using ar model representation and svm. In: Machine Learning and Cybernetics, 2008 International Conference on, vol. 4, pp. 2245–2250. IEEE, Kunming (2008)

    Google Scholar 

  62. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference, pp. 372–378. IEEE, London (2014)

    Google Scholar 

  63. Janecek, A., Gansterer, W., Demel, M., Ecker, G.: On the relationship between feature selection and classification accuracy. In: New challenges for feature selection in data mining and knowledge discovery, pp. 90–105 (2008)

    Google Scholar 

  64. Joel, G.: Data science from scratch: first principles with python (2015)

    Google Scholar 

  65. Stikic, M., Van Laerhoven, K., Schiele, B.: Exploring semi-supervised and active learning for activity recognition. In: Wearable computers, 2008. ISWC 2008. 12th IEEE international symposium on, pp. 81–88. IEEE (2008)

    Google Scholar 

  66. Machado, I.P.: Human activity data discovery based on accelerometry. PhD thesis, Faculdade de Ciências e Tecnologia (2013)

    Google Scholar 

  67. Khan, A.M., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 14(5), 1166–1172 (2010)

    Google Scholar 

  68. The aware home.: http://awarehome.imtc.gatech.edu Accessed 02 March 2019

  69. The Domus Laboratory.: http://domus.usherbrooke.ca Accessed 02 March 2019

  70. The iDorm Project.: http://cswww.essex.ac.uk/iieg/idorm.htm. Accessed 02 March 2019

  71. Celisse, A., et al.: Optimal cross-validation in density estimation with the \(l \{2\}\) -loss. Ann. Stat. 42(5), 1879–1910 (2014)

    Article  MathSciNet  Google Scholar 

  72. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Google Scholar 

  73. McLachlan, G.J., Do, K.-A., Ambroise, C.: Analyzing Microarray Gene Expression Data, vol. 422. Wiley, Hoboken (2005)

    Google Scholar 

  74. Dubitzky, W., Granzow, M., Berrar, D.P.: Fundamentals of Data Mining in Genomics and Proteomics. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  75. Landry, C.: Market transfers of water for environmental protection in the western united states. Water Policy 1(5), 457–469 (1998)

    Article  Google Scholar 

  76. Cawley, G.C., Talbot, N.L.C.: Cawley2010over, on over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010). JMLR. Org

    Google Scholar 

  77. Yeoh, W.-S., Pek, I., Yong, Y.-H., Chen, X., Waluyo, A.B.: Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5184–5187. IEEE (2008)

    Google Scholar 

  78. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Detection of daily physical activities using a triaxial accelerometer. Med. Biol. Eng. Comput. 41(3), 296–301 (2003)

    Article  Google Scholar 

  79. Baek, J., Lee, G., Park, W., Yun, B.-J.: Accelerometer signal processing for user activity detection. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 610–617. Springer, Berlin (2004)

    Google Scholar 

  80. Meijer, G.A.L., Westerterp, K.R., Verhoeven, F.M.H., Koper, H.B.M., ten Hoor, F.: Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans. Biomed. Eng. 38(3), 221–229 (1991)

    Google Scholar 

  81. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. Technical Report, Carnegie-Mellon Univ Pittsburgh PA school of Computer Science (2006)

    Google Scholar 

  82. Tamura, T., Fujimoto, T., Muramoto, H., Huang, J., Sakaki, H., Togawa, T.: The design of an ambulatory physical activity monitor and it application to the daily activity of the elderly. In: Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society, vol. 2, pp. 1591–1592. IEEE (1995)

    Google Scholar 

  83. Mehmood, A., Raza, A., Nadeem, A., Saeed, U.: Study of multi-classification of advanced daily life activities on shimmer sensor dataset. Int. J. Commun. Netw. Inf. Secur. 8(2), 86 (2016)

    Google Scholar 

  84. Gupta, P., Dallas, T.: Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 61(6), 1780–1786 (2014)

    Article  Google Scholar 

  85. Leutheuser, H., Schuldhaus, D., Eskofier, B.M.: Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS One 8(10), e75196 (2013)

    Google Scholar 

  86. Lyons, G.M., Culhane, K.M., Hilton, D., Grace, P.A., Lyons, D.: A description of an accelerometer-based mobility monitoring technique. Med. Eng. Phys. 27(6), 497–504 (2005)

    Article  Google Scholar 

  87. Lara, O.D., Pérez, A.J., Labrador, M.A., Posada, J.D.: Centinela: a human activity recognition system based on acceleration and vital sign data. Pervas. Mob. Comput. 8(5), 717–729 (2012)

    Google Scholar 

  88. McGlynn, D., Madden, M.G.: An ensemble dynamic time warping classifier with application to activity recognition. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 339–352. Springer, Berlin (2010)

    Google Scholar 

  89. Ermes, M., Parkka, J., Cluitmans, L.: Advancing from offline to online activity recognition with wearable sensors. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4451–4454. IEEE (2008)

    Google Scholar 

  90. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

    Article  Google Scholar 

  91. Ahmadi, A., Mitchell, E., Richter, C., Destelle, F., Gowing, M., O’Connor, N.E., Moran, K.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2014)

    Google Scholar 

  92. Min, J.-K., Cho, S.-B.: Activity recognition based on wearable sensors using selection/fusion hybrid ensemble. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1319–1324. IEEE, Anchorage (2011)

    Google Scholar 

  93. Menz, H.B., Lord, S.R., Fitzpatrick, R.C.: Age-related differences in walking stability. Age Age. 32(2), 137–142 (2003)

    Google Scholar 

  94. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10(1), 156–167 (2006)

    Google Scholar 

  95. Hanai, Y., Nishimura, J., Kuroda, T.: Haar-like filtering for human activity recognition using 3d accelerometer. In: Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th, pp. 675–678. IEEE, Marco Island, FL (2009)

    Google Scholar 

  96. Botros, M., Heskes, T., de Vries, I.A.P.: Supervised learning in human activity recognition based on multimodal body sensing (2017)

    Google Scholar 

  97. Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, A.: A robust human activity recognition system using smartphone sensors and deep learning. Future Gener. Comput. Syste. 81, 307–313 (2018)

    Google Scholar 

  98. Anguita, D., Ghio, A., Oneto, L., Parra, F.X.L., Ortiz, J.L.R.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)

    Google Scholar 

  99. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  100. Romera-Paredes, B., Aung, M.S.H., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 443–448 (2013)

    Google Scholar 

  101. Kästner, M., Strickert, M., Villmann, T., Mittweida, S.-G.: A sparse kernelized matrix learning vector quantization model for human activity recognition. In: ESANN (2013)

    Google Scholar 

  102. Reiss, A., Hendeby, G., Stricker, D.: A competitive approach for human activity recognition on smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), 24-26 April, Bruges, Belgium, pp. 455–460 (2013)

    Google Scholar 

  103. Reyes-Ortiz, J.-L., Oneto, L., Ghio, A., Samá, A., Anguita, D., Parra, X.: Human activity recognition on smartphones with awareness of basic activities and postural transitions. In: International Conference on Artificial Neural Networks, pp. 177–184. Springer, Berlin (2014)

    Google Scholar 

  104. Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016)

    Article  Google Scholar 

  105. Toda, T., Inoue, S., Ueda, N.: Mobile activity recognition through training labels with inaccurate activity segments. In: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 57–64. ACM, New York (2016)

    Google Scholar 

  106. Hasc2010 corpus.: http://hasc.jp. Accessed 27 March 2019

  107. Wickramasinghe, A., Ranasinghe, D.C., Fumeaux, C., Hill, K.D., Visvanathan, R.: Sequence learning with passive rfid sensors for real-time bed-egress recognition in older people. IEEE J. Biomed. Health Inform. 21(4), 917–929 (2017)

    Google Scholar 

  108. Torres, R.L.S., Ranasinghe, D.C., Shi, Q., Sample, A.P.: Sensor enabled wearable rfid technology for mitigating the risk of falls near beds. In: RFID (RFID), 2013 IEEE International Conference on, pp. 191–198. IEEE, Penang (2013)

    Google Scholar 

  109. Micucci, D., Mobilio, M., Napoletano, P.: Unimib shar: a dataset for human activity recognition using acceleration data from smartphones. Appl. Sci. 7(10), 1101 (2017)

    Article  Google Scholar 

  110. Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human actions using wearable motion sensor networks. J. Ambient Intell. Smart Environ. 1(2), 103–115 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahad, M.A.R., Antar, A.D., Ahmed, M. (2021). Methodology of Activity Recognition: Features and Learning Methods. In: IoT Sensor-Based Activity Recognition. Intelligent Systems Reference Library, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-51379-5_3

Download citation

Publish with us

Policies and ethics