Skip to main content

Basic Structure for Human Activity Recognition Systems: Preprocessing and Segmentation

  • Chapter
  • First Online:
IoT Sensor-Based Activity Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 173))

Abstract

Automatic recognition of human activities using sensor-based systems is commonly known as human activity recognition (HAR). It is required to follow a structural pipeline to recognize activity using a machine learning technique. This chapter represents the different stages of this structural pipeline in detail. Following this, the preprocessing steps have been analyzed to clean and remove noises from raw sensor data. The importance of segmentation and criterions to select the best windowing method have been also described based on previous research works. The challenges regarding the selection of window length, window type, choosing overlapping percentage, and the relation between window duration and performance have been also investigated in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  2. Ahad, M.A.R.: Computer Vision and Action Recognition: A Guide for Image Processing and Computer Vision Community for Action Understanding, vol. 5. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  3. Ahad, M.A.R.: Vision and sensor based human activity recognition: challenges ahead (2020)

    Google Scholar 

  4. Antar, A.D., Ahad, M.A.R., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. In: IEEE CVPR Workshop (2019)

    Google Scholar 

  5. Hossain, T., Goto, H., Ahad, M.A.R., Inoue, S.: A study on sensor-based activity recognition having missing data. In: 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 556–561. IEEE, Kitakyushu (2018)

    Google Scholar 

  6. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 134–139. IEEE, Spokane, WA (2019)

    Google Scholar 

  7. Ghahramani, Z.: Unsupervised learning. In: Advanced Lectures on Machine Learning, pp. 72–112. Springer, Berlin (2004)

    Google Scholar 

  8. Mathie, M.: Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer. University of New South Wales Sydney, Sydney (2003)

    Google Scholar 

  9. Huang, M., Zhao, G., Wang, L., Yang, F.: A pervasive simplified method for human movement pattern assessing. In: Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on, pp. 625–628. IEEE, Shanghai (2010)

    Google Scholar 

  10. Liu R., Zhou Ji., Liu M., Hou X.: A wearable acceleration sensor system for gait recognition. In: Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on, pp. 2654–2659. IEEE, Harbin (2007)

    Google Scholar 

  11. Wen, T., Wang, L., Gu, J., Huang, B.: An acceleration-based control framework for interactive gaming. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 2388–2391. IEEE, Berlin (2009)

    Google Scholar 

  12. Antonsson, E.K., Mann, R.W.: The frequency content of gait. J. Biomechan. 18(1), 39–47 (1985)

    Google Scholar 

  13. Fahrenberg, J., Foerster, F., Smeja, M., Müller, W.: Assessment of posture and motion by multichannel piezoresistive accelerometer recordings. Psychophysiology 34(5), 607–612 (1997)

    Google Scholar 

  14. Foerster, F., Fahrenberg, J.: Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav. Res. Methods Instrum. Comput. 32(3), 450–457 (2000)

    Article  Google Scholar 

  15. Khan, A.M., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 14(5), 1166–1172 (2010)

    Google Scholar 

  16. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Architecture of Computing Systems (ARCS), 2010 23rd International Conference on, pp. 1–10. VDE, Frankfurt (2010)

    Google Scholar 

  17. Antar, A.D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., Yagi, Y., Ahad, M.A.R., Ngo, T.T.: Wearable sensor-based gait analysis for age and gender estimation (2020)

    Google Scholar 

  18. Ngo, T.T., Ahad, A.R. Md., Antar, A.D., Ahmed, M., Muramatsu, D., Makihara, Y., Yagi, Y., Inoue, S., Hossain, T., Hattori, Y.: Ou-isir wearable sensor-based gait challenge: age and gender. In: Proceedings of the 12th IAPR International Conference on Biometrics, ICB (2019)

    Google Scholar 

  19. Banos, O., Galvez, J.-M., Damas, M., Pomares, H., Rojas, I.: Window size impact in human activity recognition. Sensors 14(4), 6474–6499 (2014)

    Article  Google Scholar 

  20. Sekine, M., Tamura, T., Togawa, T., Fukui, Y.: Classification of waist-acceleration signals in a continuous walking record. Med. Eng. Phys. 22(4), 285–291 (2000)

    Article  Google Scholar 

  21. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: International Conference on Pervasive Computing, pp. 1–16. Springer, Berlin (2006)

    Google Scholar 

  22. Nyan, M.N., Tay, F.E.H., Seah, K.H.W., Sitoh, Y.Y.: Classification of gait patterns in the time-frequency domain. J. Biomech. 39(14), 2647–2656 (2006)

    Article  Google Scholar 

  23. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pp. 5041–5044. IEEE, San Antonio, TX (2009)

    Google Scholar 

  24. Gu, T., Wu, Z., Tao, X., Pung, H.K., Lu, J.: epsicar: an emerging patterns based approach to sequential, interleaved and concurrent activity recognition. In: Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, pp. 1–9. IEEE, Galveston, TX (2009)

    Google Scholar 

  25. Györbíró, N., Fábián, Á., Hományi, G.: An activity recognition system for mobile phones. Mob. Netw. Appl. 14(1), 82–91 (2009)

    Article  Google Scholar 

  26. Hong, Y.-J., Kim, I.-J., Ahn, S.C., Kim, H.-G.: Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theory 18(4), 446–455 (2010)

    Google Scholar 

  27. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.: Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquitous Comput. 14(7), 645–662 (2010)

    Google Scholar 

  28. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: Intelligent Environments (IE), 2012 8th International Conference on, pp. 214–221. IEEE, Roma (2012)

    Google Scholar 

  29. Yoshizawa, M., Takasaki, W., Ohmura, R.: Parameter exploration for response time reduction in accelerometer-based activity recognition. In: Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pp. 653–664. ACM, New York (2013)

    Google Scholar 

  30. Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P.-F., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med. Biol. Eng. Comput. 37(6), 686–691 (1999)

    Article  Google Scholar 

  31. Aminian, K., Najafi, B., Büla, C., Leyvraz, P.-F., Robert, Ph.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 35(5), 689–699 (2002)

    Google Scholar 

  32. Mansfield, A., Lyons, G.M.: The use of accelerometry to detect heel contact events for use as a sensor in fes assisted walking. Med. Eng. Phys. 25(10), 879–885 (2003)

    Google Scholar 

  33. Zijlstra, W., Hof, At.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2), 1–10 (2003)

    Google Scholar 

  34. Zijlstra, W.: Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 92(1–2), 39–44 (2004)

    Article  Google Scholar 

  35. Selles, R.W., Formanoy, M.A.G., Bussmann, J.B.J., Janssens, P.J., Stam, H.J.: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 81–88 (2005)

    Google Scholar 

  36. Jasiewicz, J.M., Allum, J.H.J., Middleton, J.W., Barriskill, A., Condie, P., Purcell, B., Li, R.C.T.: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4), 502–509 (2006)

    Google Scholar 

  37. Ward, J.A., Lukowicz, P., Troster, G., Starner, T.E.: Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans. Anal. Mach. Intell. 28(10), 1553–1567 (2006)

    Google Scholar 

  38. Benocci, M., Bächlin, M., Farella, E., Roggen, D., Benini, L., Tröster, G.: Wearable assistant for load monitoring: recognition of on—body load placement from gait alterations. In: Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2010 4th International Conference on-NO PERMISSIONS, pp. 1–8. IEEE (2010)

    Google Scholar 

  39. Sant’Anna, A., Wickström, N.: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry. IEEE Trans. Inf. Technol. Biomed. 14(5), 1180–1187 (2010)

    Article  Google Scholar 

  40. Dobkin, B.H., Xu, X., Batalin, M., Thomas, S., Kaiser, W.: Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke 42(8), 2246–2250 (2011)

    Google Scholar 

  41. Aung, M.S.H., Thies, S.B., Kenney, L.P.J., Howard, D., Selles, R.W., Findlow, A.H., Goulermas, J.Y.: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 908–916 (2013)

    Google Scholar 

  42. Mantyjarvi, J., Himberg, J., Seppanen, T.: Recognizing human motion with multiple acceleration sensors. In: Systems, Man, and Cybernetics, 2001 IEEE International Conference on, vol. 2, pp. 747–752. IEEE, Tucson, AZ (2001)

    Google Scholar 

  43. Kern, N., Schiele, B., Schmidt, A.: Multi-sensor activity context detection for wearable computing. In: European Symposium on Ambient Intelligence, pp. 220–232. Springer, Berlin (2003)

    Google Scholar 

  44. Krause, A., Siewiorek, D.P., Smailagic, A., Farringdon, J.: Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: null, p. 88. IEEE (2003)

    Google Scholar 

  45. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, pp. 1–17. Springer, Berlin (2004)

    Google Scholar 

  46. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies, pp. 159–163. ACM, New York (2005)

    Google Scholar 

  47. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, p. 4. IEEE, Cambridge, MA (2006)

    Google Scholar 

  48. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

    Article  Google Scholar 

  49. Huynh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: International Symposium on Location-and Context-Awareness, pp. 50–67. Springer, Berlin (2007)

    Google Scholar 

  50. Pirttikangas, S., Fujinami, K., Nakajima, T.: Feature selection and activity recognition from wearable sensors. In: International Symposium on Ubiquitious Computing Systems, pp. 516–527. Springer, Berlin (2006)

    Google Scholar 

  51. Wang, N., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Accelerometry based classification of walking patterns using time-frequency analysis. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4899–4902. IEEE, Arlington, VA (2007)

    Google Scholar 

  52. Suutala, J., Pirttikangas, S., Röning, J.: Discriminative temporal smoothing for activity recognition from wearable sensors. In: International Symposium on Ubiquitious Computing Systems, pp. 182–195. Springer, Berlin (2007)

    Google Scholar 

  53. Amft, O., Tröster, G.: Recognition of dietary activity events using on-body sensors. Artif. Intel. Med. 42(2), 121–136 (2008)

    Article  Google Scholar 

  54. Stikic, M., Huynh, T., Van Laerhoven, K., Schiele, B.: Adl recognition based on the combination of rfid and accelerometer sensing. In: Pervasive Computing Technologies for Healthcare, 2008. PervasiveHealth 2008. Second International Conference on, pp. 258–263. IEEE, Tampere (2008)

    Google Scholar 

  55. Preece, S., Goulermas, J.Y., Kenney, L.P.J., Howard, D., et al.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56, 871–879 (2009)

    Google Scholar 

  56. Altun, K., Barshan, B.: Human activity recognition using inertial/magnetic sensor units. In: International Workshop on Human Behavior Understanding, pp. 38–51. Springer, Berlin (2010)

    Google Scholar 

  57. Han, C.W., Kang, S.J., Kim, N.S.: Implementation of hmm-based human activity recognition using single triaxial accelerometer. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93(7), 1379–1383 (2010)

    Google Scholar 

  58. Khan, A.M., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: Future Information Technology (FutureTech), 2010 5th International Conference on, pp. 1–6. IEEE, Busan (2010)

    Google Scholar 

  59. Marx, R.: Ad-hoc accelerometer activity recognition in the iball. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, vol. 58 (2012)

    Google Scholar 

  60. Sun, L., Zhang, D., Li, B., Guo, B., Li, S.: Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In: International Conference on Ubiquitous Intelligence and Computing, pp. 548–562. Springer, Berlin (2010)

    Google Scholar 

  61. Atallah, L., Lo, B., King, R., Yang, G.-Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 5(4), 320–329 (2011)

    Article  Google Scholar 

  62. Gjoreski, H., Gams, M.: Accelerometer data preparation for activity recognition. In: Proceedings of the International Multiconference Information Society, Ljubljana, Slovenia, vol. 1014, p. 1014 (2011)

    Google Scholar 

  63. Jiang, M., Shang, H., Wang, Z., Li, H., Wang, Y.: A method to deal with installation errors of wearable accelerometers for human activity recognition. Physiol. Meas. 32(3), 347 (2011)

    Article  Google Scholar 

  64. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsletter 12(2), 74–82 (2011)

    Google Scholar 

  65. Lee, Y.-S., Cho, S.-B.: Activity recognition using hierarchical hidden markov models on a smartphone with 3d accelerometer. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 460–467. Springer, Berlin (2011)

    Google Scholar 

  66. Siirtola, P., Röning, J.: User-independent human activity recognition using a mobile phone: offline recognition versus real-time on device recognition. In: Distributed Computing and Artificial Intelligence, pp. 617–627. Springer, Berlin (2012)

    Google Scholar 

  67. Wang, J.-H., Ding, J.-J., Chen, Y., Chen, H.-H.: Real time accelerometer-based gait recognition using adaptive windowed wavelet transforms. In: Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on, pp. 591–594. IEEE, Kaohsiung (2012)

    Google Scholar 

  68. Hemalatha, C.S., Vaidehi, V.: Frequent bit pattern mining over tri-axial accelerometer data streams for recognizing human activities and detecting fall. Proc. Comput. Sci. 19, 56–63 (2013)

    Google Scholar 

  69. Yunyoung Nam and Jung Wook Park: Physical activity recognition using a single triaxial accelerometer and a barometric sensor for baby and child care in a home environment. J. Ambient Intell. Smart Environ. 5(4), 381–402 (2013)

    Article  Google Scholar 

  70. Yunyoung Nam and Jung Wook Park: Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor. IEEE J. Biomed. Health Inform. 17(2), 420–426 (2013)

    Article  Google Scholar 

  71. Zheng, Y., Wong, W.-K., Guan, X., Trost, S.: Physical activity recognition from accelerometer data using a multi-scale ensemble method. In: IAAI (2013)

    Google Scholar 

  72. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193 (2013)

    Google Scholar 

  73. Khan, A.M.: Human activity recognition using a single tri-axial accelerometer. Department of Computer Engineering, Graduate School, Kyung Hee University, Seoul, Korea (2011)

    Google Scholar 

  74. Schindler, K., Van Gool, L.: Action snippets: how many frames does human action recognition require? In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8. IEEE, Anchorage (2008)

    Google Scholar 

  75. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors—a review of classification techniques. Physiol. Meas. 30(4), R1 (2009)

    Google Scholar 

  76. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: Wearable Computers, 2007 11th IEEE International Symposium on, pp. 37–40. IEEE, Washington, D.C. (2007)

    Google Scholar 

  77. Lara, O.D., Pérez, A.J., Labrador, M.A., Posada, J.D.: Centinela: a human activity recognition system based on acceleration and vital sign data. Pervas. Mobile Comput. 8(5), 717–729 (2012)

    Google Scholar 

  78. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sensor Netw. (TOSN) 6(2), 13 (2010)

    Google Scholar 

  79. Cheng, J., Amft, O., Lukowicz, P.: Active capacitive sensing: exploring a new wearable sensing modality for activity recognition. In: International Conference on Pervasive Computing, pp. 319–336. Springer, Berlin (2010)

    Google Scholar 

  80. Minnen, D., Westeyn, T., Ashbrook, D., Presti, P., Starner, T.: Recognizing soldier activities in the field. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), pp. 236–241. Springer, Berlin (2007)

    Google Scholar 

  81. Berchtold, M., Budde, M., Schmidtke, H.R., Beigl, M.: An extensible modular recognition concept that makes activity recognition practical. In: Annual Conference on Artificial Intelligence, pp. 400–409. Springer, Berlin (2010)

    Google Scholar 

  82. McGlynn, D., Madden, M.G.: An ensemble dynamic time warping classifier with application to activity recognition. In: Research and Development in Intelligent Systems xxvii, pp. 339–352. Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahad, M.A.R., Antar, A.D., Ahmed, M. (2021). Basic Structure for Human Activity Recognition Systems: Preprocessing and Segmentation. In: IoT Sensor-Based Activity Recognition. Intelligent Systems Reference Library, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-51379-5_2

Download citation

Publish with us

Policies and ethics