Skip to main content

Introduction on Sensor-Based Human Activity Analysis: Background

  • Chapter
  • First Online:
IoT Sensor-Based Activity Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 173))

  • 810 Accesses

Abstract

The constant growth of sensor-based systems and technologies for the detection of human activities has made notable progress in the field of human-computer interaction. The continuation of Internet connectivity into daily objects and physical devices has made it possible for the researchers to use IoT sensors for healthcare, elderly people monitoring, fitness tracking, working activity monitoring, and so on. The prominent application fields of sensor-based activity monitoring systems are many, but not limited to, pattern recognition, machine learning, context awareness, and human-centric sensing. If a salient investigation is performed on this topic by fellow researchers, this can create a vital turn in the way of interaction among people and mobile devices. In this book, we have bestowed a comprehensive survey showing the various aspects of human activity recognition based on wearable, environmental, and smartphone sensors. After discussing the background, numerous factors have been analyzed for the data pre-processing part regarding noise filtering and segmentation methods. The list of sensing devices, sensors, and application tools listed in this book can be used for the activity data collection efficiently. Moreover, a detailed analysis of more than 150 benchmark datasets and dataset repositories in this book includes information about sensors, attributes, activity classes, etc. These datasets sum up several types of sensor-based daily activities, medical activities, fitness activities, transportation activities, device usage, fall detection, and hand gesture data. In addition to these, we have shown the feature extraction and classical machine learning methods in detail. Moreover, the overview of different types of classification problems has been given along with the discussion on several performance evaluation techniques showing their advantages and limitations. Furthermore, we have also discussed the importance of deep learning methods to solve the problem of shallow learning using hand-crafted features in conventional pattern recognition approaches. Finally, we have presented a summary of activity recognition methods focused on recent works in several benchmark datasets, and mentioned some future challenges regarding data collection, design issues, and other prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M., Das Antar A., Ahad, M.A.R.: An approach to classify human activities in real-time from smartphone sensor data. In: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR)

    Google Scholar 

  2. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 134–139. IEEE, Cheney, WA (2019)

    Google Scholar 

  3. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–105 (1991)

    Article  Google Scholar 

  4. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervas. Comput. 7(2), 32–41 (2008)

    Google Scholar 

  5. Laerhoven, V.K., Aidoo, K.: Teaching context to applications. Pers. Ubiquitous Comput. 5(1), 46–49 (2001)

    Google Scholar 

  6. Wren, C.R., Tapia, E.M.: Toward scalable activity recognition for sensor networks. In: International Symposium on Location-and Context-Awareness, pp. 168–185. Springer, Berlin (2006)

    Google Scholar 

  7. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Understand. 73(3), 428–440 (1999)

    Google Scholar 

  8. Cedras, C., Shah, M.: Motion-based recognition a survey. Image Vis. Comput. 13(2), 129–155 (1995)

    Google Scholar 

  9. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  10. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Understand. 104(2–3), 90–126 (2006)

    Google Scholar 

  11. Bouten, C.V.C., Sauren, A.A.H.J., Verduin, M., Janssen, J.D.: Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. Med. Biol. Eng. Comput. 35(1), 50–56 (1997)

    Google Scholar 

  12. Swartz, A.M., Strath, S.J., Bassett, D.R., O’brien, W.L., King, G.A., Ainsworth, B.E.: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med. Sci. Sports Exerc. 32(9), S450–S456 (2000)

    Google Scholar 

  13. Crouter, S.E., Clowers, K.G., Bassett, D.R. Jr.: A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 100(4), 1324–1331 (2006)

    Google Scholar 

  14. Mayagoitia, R.E., Lötters, J.C., Veltink, P.H., Hermens, H.: Standing balance evaluation using a triaxial accelerometer. Gait Posture 16(1), 55–59 (2002)

    Google Scholar 

  15. Moe-Nilssen, R., Helbostad, J.L.: Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 16(1), 60–68 (2002)

    Google Scholar 

  16. Pannurat, N., Theekakul, P., Thiemjarus, S., Nantajeewarawat, E.: Toward real-time accurate fall/fall recovery detection system by incorporating activity information. In: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, pp. 196–199. IEEE, Hong Kong (2012)

    Google Scholar 

  17. Islam, M.Z., Serikawa, S., Islam, Z.Z., Tazwar, S.M., Ahad, M.A.R.: Automatic fall detection system of unsupervised elderly people using smartphone. In: Annual Conference on Artificial Intelligence. IEEE, Hawaii (2017)

    Google Scholar 

  18. King, R.C., Atallah, L., Wong, C., Miskelly, F., Yang, G.-Z.: Elderly risk assessment of falls with bsn. In: 2010 International Conference on Body Sensor Networks, pp. 30–35. IEEE, Singapore (2010)

    Google Scholar 

  19. Fortino, G., Gravina, R.: Rehab-aaservice: a cloud-based motor rehabilitation digital assistant. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 305–308. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (2014)

    Google Scholar 

  20. Bi, C., Xing, G.: Ramt: Real-time attitude and motion tracking for mobile devices in moving vehicle. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 38 (2019)

    Google Scholar 

  21. Fang, Z., Yang, Y., Wang, S., Fu, B., Song, Z., Zhang, F., Zhang, D.: Mac: Measuring the impacts of anomalies on travel time of multiple transportation systems. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 42 (2019)

    Google Scholar 

  22. Antar, A.D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., Yagi, Y., Ahad, M.A.R., Ngo, T.T.: Wearable sensor-based gait analysis for age and gender estimation (2020)

    Google Scholar 

  23. Ngo, T.T., Ahad, M.A.R., Antar, A.D., Ahmed, M., Muramatsu, D., Makihara, Y., Yagi, Y., Inoue, S., Hossain, T., Hattori, Y.: Ou-isir wearable sensor-based gait challenge: age and gender. In: Proceedings of the 12th IAPR International Conference on Biometrics, ICB (2019)

    Google Scholar 

  24. Covello, R., Fortino, G., Gravina, R., Aguilar, A., Breslin, J.G.: Novel method and real-time system for detecting the cardiac defense response based on the ECG. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 53–57. IEEE, Crete (2013)

    Google Scholar 

  25. Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervas. Comput. 3(4), 50–57 (2004)

    Google Scholar 

  26. Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in a smart environment. Methods Inf. Med. 48(5), 480 (2009)

    Google Scholar 

  27. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Aaai, vol. 5, pp. 1541–1546 (2005)

    Google Scholar 

  28. Garg, R., Moreno, C.: Understanding motivators, constraints, and practices of sharing internet of things. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 44 (2019)

    Google Scholar 

  29. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)

    Google Scholar 

  30. Ahad, M.A.R.: Motion History Images for Action Recognition and Understanding. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  31. Ahad, M.A.R.: Computer Vision and Action Recognition: A Guide for Image Processing and Computer Vision Community for Action Understanding, vol. 5. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  32. Antar, A.D., Ahad, M.A.R., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. In: IEEE CVPR Workshop (2019)

    Google Scholar 

  33. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) 40(1), 1–12 (2010)

    Google Scholar 

  34. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)

    Google Scholar 

  35. Ding, D., Cooper, R.A., Pasquina, P.F., Fici-Pasquina, L.: Sensor technology for smart homes. Maturitas 69(2), 131–136 (2011)

    Google Scholar 

  36. Choi, W., Park, S., Kim, D., Lim, Y.-K., Lee, U.: Multi-stage receptivity model for mobile just-in-time health intervention. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 39 (2019)

    Google Scholar 

  37. World Population Ageing.: Department of economic and social affairs population division (2019). https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf. Accessed 25 March 2020

  38. Ward, J.A., Richardson, D., Orgs, G., Hunter, K., Hamilton, A.: Sensing interpersonal synchrony between actors and autistic children in theatre using wrist-worn accelerometers. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 148–155. ACM, New York (2018)

    Google Scholar 

  39. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Google Scholar 

  40. Dong, W., Guan, T., Lepri, B., Qiao, C.: Pocketcare: Tracking the flu with mobile phones using partial observations of proximity and symptoms. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 41 (2019)

    Google Scholar 

  41. Islam, N.R.A., Ahad, M.A.R.: A study on tiredness assessment by using eye blink detection. pp. 209–214 (2019)

    Google Scholar 

  42. Mirjafari, S., Masaba, K., Grover, T., Wang, W., Audia, P., Campbell, A.T., Chawla, N.V., Swain, V.D., Choudhury, M.D., Dey, A.K., et al.: Differentiating higher and lower job performers in the workplace using mobile sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 37 (2019)

    Google Scholar 

  43. Noman, M.T.B., Hussein, M.A., Ahad, M.A.R.: A study on tiredness measurement using computer vision. pp. 110–117 (2019)

    Google Scholar 

  44. Syeda, U.H., Zafar, Z., Islam, Z.Z., Tazwar, S.M., Rasna, M.J., Kise, K., Ahad, M.A.R.: Visual face scanning and emotion perception analysis between autistic and typically developing children. In: ACM UbiComp Workshop on Mental Health and Well-being: Sensing and Intervention. ACM, New York (2017)

    Google Scholar 

  45. Sami, M., Irtija, N., Ahad, M.A.R.: Fatigue detection using facial landmarks. In: 4th International Symposium on Affective Science and Engineering, and the 29th Modern Artificial Intelligence and Cognitive Science Conference (ISASE-MAICS) (2018)

    Google Scholar 

  46. Noman, M.T.B., Ahad, M.A.R.: Mobile-based eye-blink detection performance analysis on android platform (2018)

    Google Scholar 

  47. Gullapalli, B.T., Natarajan, A., Angarita, G.A., Malison, R.T., Ganesan, D., Rahman, T.: On-body sensing of cocaine craving, euphoria and drug-seeking behavior using cardiac and respiratory signals. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 46 (2019)

    Google Scholar 

  48. Van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: An activity monitoring system for elderly care using generative and discriminative models. Pers. Ubiquitous Comput. 14(6), 489–498 (2010)

    Google Scholar 

  49. Andrei, T., Xin, H., Jit, B., Chris, N., Liming, C., Guido, P.: Comparison of fusion methods based on dst and dbn in human activity recognition. J. Control Theory Appl. 9(1), 18–27 (2011)

    Google Scholar 

  50. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1297–1304. IEEE, Washington, DC (2011)

    Google Scholar 

  51. Tapia, E.M., Intille, S.S., Larson, K.:. Activity recognition in the home using simple and ubiquitous sensors. In: International Conference on Pervasive Computing, pp. 158–175. Springer, Berlin (2004)

    Google Scholar 

  52. Ahad, A.R. Md.: Vision and sensor based human activity recognition: Challenges ahead (2020)

    Google Scholar 

  53. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.J., Robert, P.:. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50(6), 711–723 (2003)

    Google Scholar 

  54. Costa, J., Guimbretière, F., Jung, M.F., Choudhury, T.: Boostmeup: Improving cognitive performance in the moment by unobtrusively regulating emotions with a smartwatch. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(2), 40 (2019)

    Google Scholar 

  55. Elkader, S.A., Barlow, M., Lakshika, E.: Wearable sensors for recognizing individuals undertaking daily activities. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 64–67. ACM, New York (2018)

    Google Scholar 

  56. Sarela, A., Korhonen, I., Lotjonen, J., Sola, M., Myllymaki, M.: Ist vivago/spl reg/-an intelligent social and remote wellness monitoring system for the elderly. In: Information Technology Applications in Biomedicine, 2003. 4th International IEEE EMBS Special Topic Conference on, pp. 362–365. IEEE, Birmingham, UK (2003)

    Google Scholar 

  57. Sungmee, P., Sundaresan, J.: Enhancing the quality of life through wearable technology. IEEE Eng. Med. Biol. Mag. 22(3), 41–48 (2003)

    Google Scholar 

  58. Hossain, T., Islam, M.S., Ahad, M.A.R., Inoue, S.: Human activity recognition using earable device. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 81–84. ACM, New York (2019)

    Google Scholar 

  59. Kwon, H., Abowd, G.D., Plötz, T.: Adding structural characteristics to distribution-based accelerometer representations for activity recognition using wearables. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 72–75. ACM, New York (2018)

    Google Scholar 

  60. Davide, A., Alessandro, G., Luca, O., Parra, Xavier, F., Ortiz, L., Reyes, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)

    Google Scholar 

  61. Xu, X., Tang, J., Zhang, X., Liu, X., Zhang, H., Qiu, Y.: Exploring techniques for vision based human activity recognition: methods, systems, and evaluation. Sensors 13(2), 1635–1650 (2013)

    Google Scholar 

  62. Amirbandi, E.J., Shamsipour, G.: Exploring methods and systems for vision based human activity recognition. In: Swarm Intelligence and Evolutionary Computation (CSIEC), 2016 1st Conference on, pp. 160–164. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Atiqur Rahman Ahad .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahad, M.A.R., Antar, A.D., Ahmed, M. (2021). Introduction on Sensor-Based Human Activity Analysis: Background. In: IoT Sensor-Based Activity Recognition. Intelligent Systems Reference Library, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-51379-5_1

Download citation

Publish with us

Policies and ethics