Skip to main content

Stress Modulation in Pinus spp. Somatic Embryogenesis as Model for Climate Change Mitigation: Stress Is Not Always a Problem

  • Chapter
  • First Online:
Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery

Abstract

Climate change is leading to higher temperatures and lower precipitation; this fact can have a negative impact on plant performance and survival. Latest findings have revealed that the conditions in which zygotic embryogenesis takes place have an impact on the adaptive capacity of the resulting plants. Somatic embryogenesis provides us a potent biotechnological tool to manipulate the physical and chemical conditions (water availability) along the process and to study their effect in the final success of the process in terms of quantity and quality of somatic plants produced. The development of somatic cells to somatic plantlets comprises three stages: induction of embryonal masses, maturation of embryogenic tissues, and conversion into somatic plants. Our experience in somatic embryogenesis in Pinus spp. enables us to explore the possibility to modulate the quality in terms of abiotic stress tolerance of somatic plants modifying environmental conditions during the initial stages of the process. Our results have shown that the modification of environmental conditions affected not only the success of the process in some species of pines but also the water use efficiency of the somatic plants after several months in ex vitro conditions. In the chapter, we will show the different responses obtained in all the stages of the somatic embryogenesis process as well as the response obtained after drought periods in plants growing in the greenhouse under ex vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson, M., Valladares, S., Larsson, E., Clapham, D., & von Arnold, S. (2012). Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell, Tissue and Organ Culture, 109, 391–400.

    CAS  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Google Scholar 

  • Becwar, M., Chesick, E., Handley, L. III, & Rutter, M. (1995). Method for regeneration of coniferous plants by somatic embryogenesis. US Patent 5,413,930.

    Google Scholar 

  • Bonga, J. M., Klimaszewska, K., & Von Aderkas, P. (2010). Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue and Organ Culture, 100, 241–254.

    Google Scholar 

  • Botella, L., Santamaría, O., & Diez, J. J. (2010). Fungi associated with the decline of Pinus halepensis in Spain. Fungal Diversity, 40, 1–11.

    Google Scholar 

  • Carneros, E., Celestino, C., Klimaszewska, K., Park, Y. S., Toribio, M., & Bonga, J. M. (2009). Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 98, 165–178.

    CAS  Google Scholar 

  • Castander-Olarieta, A., Montalbán, I. A., De Medeiros Oliveira, E., Dell’Aversana, E., D’Amelia, L., Carillo, P., et al. (2019). Effect of thermal stress on tissue ultrastructure and metabolite profiles during initiation of radiata pine somatic embryogenesis. Frontiers in Plant Science, 9, 1–16.

    Google Scholar 

  • Choudhury, H., Kumaria, S., & Tandon, P. (2008). Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Current Science, 95, 1433–1438.

    CAS  Google Scholar 

  • Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53, 97–119.

    CAS  PubMed  Google Scholar 

  • Corcuera, L., Gil-Pelegrin, E., & Notivol, E. (2012). Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. Trees: Structure and Function, 26, 799–808.

    CAS  Google Scholar 

  • DaMatta, F. M., & Cochicho Ramalho, J. D. (2006). Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology, 18, 55–81.

    CAS  Google Scholar 

  • Davies, W. J., Zhang, J., Yang, J., & Dodd, I. C. (2011). Novel crop science to improve yield and resource use efficiency in water-limited agriculture. The Journal of Agricultural Science, 149, 123–131.

    Google Scholar 

  • De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012). Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32, 435–449.

    PubMed  Google Scholar 

  • De Diego, N., Saiz-Fernández, I., Rodríguez, J. L., Pérez-Alfocea, P., Sampedro, M. C., Barrio, R. J., et al. (2015). Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. Journal of Plant Physiology, 188, 64–71.

    PubMed  Google Scholar 

  • Delledone, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98, 13454–13459.

    Google Scholar 

  • Duliè, V., Zhang, Y., & Salathé, E. P. (2013). Changes in twentieth-century extreme temperature and precipitation over the western United States based on observations and regional climate model simulations. Journal of Climate, 26, 8556–8575.

    Google Scholar 

  • Dungey, H. S., Brawner, J. T., Burger, F., Carson, M., Henson, M., Jefferson, P., et al. (2009). A new breeding strategy for Pinus radiata in New Zealand and New South Wales. Silvae Genetica, 58, 28–38.

    Google Scholar 

  • Efeoğlu, B. (2009). Heat shock proteins and heat shock response in plants. Gazi University Journal of Science, 22, 67–75.

    Google Scholar 

  • Eliášová, K., Vondráková, Z., Malbeck, J., Trávníčková, A., Pešek, B., Vágner, M., et al. (2017). Histological and biochemical response of Norway spruce somatic embryos to UV-B irradiation. Trees: Structure and Function, 31, 1279–1293.

    Google Scholar 

  • Espinel, S., Aragonés, A., & Ritter, E. (1995). Performance of different provenances and of the local population of the Monterrey pine (Pinus radiata D Don) in northern Spain. Annals of Forest Science, 52, 515–519.

    Google Scholar 

  • Fehérm, A. (2015). Somatic embryogenesis – stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1849, 385–402.

    Google Scholar 

  • Feller, U., & Vaseva, I. I. (2014). Extreme climatic events: Impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2, 1–17.

    Google Scholar 

  • Fenning, T. M., Walter, C., & Gartland, K. (2008). Forest biotech and climate change. Nature Biotechnology, 26, 615–617.

    CAS  PubMed  Google Scholar 

  • Filonova, L. H., Bozhkov, P. V., Brukhin, V. B., Daniel, G., Zhivotovsky, B., & von Arnold, S. (2000). Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. Journal of Cell Science, 113, 4399–4411.

    CAS  PubMed  Google Scholar 

  • García-Mendiguren, O., Montalbán, I. A., Goicoa, T., Ugarte, M. D., & Moncaleán, P. (2016a). Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees: Structure and Function, 30, 949–958.

    Google Scholar 

  • García-Mendiguren, O., Montalbán, I. A., Correia, S., Canhoto, J., & Moncaleán, P. (2016b). Different environmental conditions at initiation of radiata pine somatic embryogenesis determine the protein profile of somatic embryos. Plant Biotechnology, 33, 143–152.

    Google Scholar 

  • Gimeno, T. E., Pas, B., Lemos-Filho, J. P., & Valladares, F. (2009). Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiology, 29, 87–98.

    PubMed  Google Scholar 

  • Harry, I. S., & Thorpe, T. A. (1991). Somatic embryogenesis and plant regeneration from mature zygotic embryos of red spruce. Botanical Gazette, 152, 446–452.

    CAS  Google Scholar 

  • Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2018). Insights from proteomic studies into plant somatic embryogenesis. Proteomics, 18, 1700265.

    Google Scholar 

  • Jia, J., Zhou, J., Shi, W., Cao, X., Luo, J., Polle, A., et al. (2017). Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Scientific Reports, 7, 43215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, V., Joung, J.-G., Fei, Z., & Jander, G. (2010). Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39, 933–947.

    CAS  PubMed  Google Scholar 

  • Klubicová, K., Uvácková, L., Danchenko, M., Nemecek, P., Skultéty, L., Salaj, J., & Salaj, T. (2017). Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. Journal of Proteomics, 3, 99–111.

    Google Scholar 

  • Kvaalen, H., & Johnsen, Ø. (2008). Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. The New Phytologist, 177, 49–59.

    PubMed  Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lippert, D., Zhuang, J., Ralph, S., Ellis, D. E., Gilbert, M., Olafson, R., Ritland, K., Ellis, B., Douglas, C. J., & Bohlmann, J. (2005). Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics, 5, 461–473.

    CAS  PubMed  Google Scholar 

  • Maestre, F. T., & Cortina, J. (2004). Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecology and Management, 198, 303–317.

    Google Scholar 

  • Manzanera, J. A., Gómez-Garay, A., Pintos, B., Rodríguez-Rastrero, M., Moreda, E., Zazo, J., et al. (2017). Sap flow, leaf-level gas exchange and spectral responses to drought in Pinus sylvestris, Pinus pinea and Pinus halepensis. iForest, 10, 204–214.

    Google Scholar 

  • Marsoni, M., Bracale, M., Espen, L., Prinsi, B., Negri, S., & Vannini, C. (2008). Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Reports, 27, 347–356.

    CAS  PubMed  Google Scholar 

  • Merino, I., Abrahamsson, M., Larsson, E., & von Arnold, S. (2018). Identification of molecular processes that differ among Scots pine somatic embryogenic cell lines leading to the development of normal or abnormal cotyledonary embryos. Tree Genetics & Genomes, 14, 34. https://doi.org/10.1007/s11295-018-1247-z.

    Article  Google Scholar 

  • Moncaleán, P., Cañal, M. J., Fernández, H., Fernández, B., & Rodríguez, A. (2003). Nutritional and gibberellic acid requirements in kiwifruit vitroponic cultures. In Vitro Cellular & Developmental Biology. Plant, 39, 49–55.

    Google Scholar 

  • Moncaleán, P., Alonso, P., Centeno, M. L., Cortizo, M., Rodríguez, A., Fernández, B., et al. (2005). Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiology, 25, 1–9.

    PubMed  Google Scholar 

  • Moncaleán, P., García-Mendiguren, O., Novák, O., Strnad, M., Goicoa, T., Ugarte, M. D., et al. (2018). Temperature and water availability during maturation affect the cytokinins and auxins profile of radiata pine somatic embryos. Frontiers in Plant Science, 9, 1898. https://doi.org/10.3389/fpls.2018.01898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montalbán, I. A., De Diego, N., & Moncaleán, P. (2011). Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry, 84, 363–373.

    Google Scholar 

  • Montalbán, I. A., Setién-Olarra, A., Hargreaves, C. L., & Moncaleán, P. (2013). Somatic embryogenesis in Pinus halepensis Mill.: An important ecological species from the Mediterranean forest. Trees: Structure and Function, 27, 1339–1351.

    Google Scholar 

  • Montalbán, I. A., García-Mendiguren, O., Goicoa, T., Ugarte, M. D., & Moncaleán, P. (2015). Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forest, 46, 157–165.

    Google Scholar 

  • Moradi, P., Ford-Lloyd, B., & Pritchard, J. (2017). Metabolomic approach reveals the biochemical mechanisms underlying drought stress tolerance in thyme. Analytical Biochemistry, 527, 49–62.

    CAS  PubMed  Google Scholar 

  • Morel, A., Teyssier, C., Trontin, J.-F., Eliášová, K., Pešek, B., Beaufour, M., et al. (2014). Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: Transcriptomic and proteomic analyses. Physiologia Plantarum, 152, 184–201.

    CAS  PubMed  Google Scholar 

  • Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163, 361–367.

    CAS  Google Scholar 

  • Percy, R. E., Klimaszewska, K., & Cyr, D. R. (2000). Evaluation of somatic embryogenesis for clonal propagation of western white pine. Canadian Journal of Forest Research, 30, 1867–1876.

    Google Scholar 

  • Pereira, C., Montalbán, I. A., García-Mendiguren, O., Goicoa, T., Ugarte, M. D., Correia, S., et al. (2016). Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. Journal of Forest Research, 21, 143–150.

    CAS  Google Scholar 

  • Pereira, C., Montalbán, I. A., Goicoa, T., Ugarte, M. D., Correia, S., Canhoto, J. M., et al. (2017). The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis. Forest Systems, 26, 1–4.

    Google Scholar 

  • Pinheiro, C., Guerra-Guimarães, L., David, T. S., & Vieira, A. (2014). Proteomics: State of the art to study Mediterranean woody species under stress. Environmental and Experimental Botany, 103, 117–127.

    CAS  Google Scholar 

  • Pullman, G. S., & Skryabina, A. (2007). Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Reports, 26(7), 873–887. https://doi.org/10.1007/s00299-006-0296-1.

    Article  CAS  PubMed  Google Scholar 

  • Pullman, G. S., Johnson, S., Peter, G., Cairney, J., & Xu, N. (2003). Improving loblolly pine somatic embryo maturation: Comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Reports, 21(8), 747–758. https://doi.org/10.1007/s00299-003-0586-9.

    Article  CAS  PubMed  Google Scholar 

  • Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H., & Dhindsa Rajinder, S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal, 31, 629–638.

    CAS  PubMed  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6, 410–417.

    CAS  PubMed  Google Scholar 

  • Smertenko, A., & Bozhkov, P. V. (2014). Somatic embryogenesis: Life and death processes during apical-basal pattering. Journal of Experimental Botany, 65, 1343–1360.

    CAS  PubMed  Google Scholar 

  • Steiner, N., Farias-Soares, F. L., Schmidt, É. C., Pereira, M. L. T., Scheid, B., Rogge-Renner, G. D., et al. (2016). Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O Kuntze. Protoplasma, 253, 487–501.

    CAS  PubMed  Google Scholar 

  • Vacca, R. A., Pinto, M. C. D., Valenti, D., Passarella, S., Marra, E., & Gara, L. D. (2004). Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in Tobacco Bright-Yellow 2 Cells. Plant Physiology, 134, 1100–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Arnold, S., Claphama, D., & Abrahamsson, M. (2018). Embryology in conifers. In F. M. Cánovas (Ed.), Molecular physiology and biotechnology of trees (Advances in botanical research) (pp. 157–184). London: Academic Press.

    Google Scholar 

  • Wang, X., Mao, Z., Zhang, J., Hemat, M., Huang, M., Cai, J., et al. (2019). Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany, 166, 103804.

    CAS  Google Scholar 

  • Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop Journal, 4, 162–176.

    Google Scholar 

  • Woodrow, P., Ciarmiello, L. F., Annunziata, M. G., Pacifico, S., Iannuzzi, F., Mirto, A., et al. (2017). Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologia Plantarum, 159, 290–312.

    CAS  PubMed  Google Scholar 

  • Xia, X., Zhou, Y., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.

    CAS  PubMed  Google Scholar 

  • Zhang, S. G., Han, S. Y., Yang, W. H., Wei, H. L., Zhang, M., & Qi, L. W. (2010). Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 100, 21–29.

    CAS  Google Scholar 

  • Zhao, J., Wang, B., Wang, X., Zhang, Y., Dong, M., & Zhang, J. (2015). iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr). Plant Cell, Tissue and Organ Culture, 120, 655–669.

    CAS  Google Scholar 

Download references

Funding

This research was funded by MINECO (Spanish Government) project (AGL2016-76143-C4-3R), BIOALI-CYTED (P117RT0522), DECO (Basque government, Ayudas de formación a jóvenes investigadores y tecnólogos), Renature: Projecto ReNature (Centro-01-0145-FEDER-000007) – Valorização dos Recursos Naturais Endógenos da Região Centro, and Portuguese Foundation for Science and Technology (FCT), POCH (Programa Operacional Capital Humano) (SFRH/BD/123702/2016) and MULTIFOREVER (Project MULTIFOREVER is supported under the umbrella of ERA-NET cofund Forest Value by ANR (FR), FNR (DE), MINCyT (AR), MINECO-AEI (ES), MMM (FI) and VINNOVA (SE). Forest value has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement Nº 773324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Moncaleán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castander-Olarieta, A., Pereira, C., Montalbán, I.A., Canhoto, J., Moncaleán, P. (2020). Stress Modulation in Pinus spp. Somatic Embryogenesis as Model for Climate Change Mitigation: Stress Is Not Always a Problem. In: Chong, P., Newman, D., Steinmacher, D. (eds) Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer, Cham. https://doi.org/10.1007/978-3-030-51358-0_7

Download citation

Publish with us

Policies and ethics