Skip to main content

Use of Biotechnology in Forestry Breeding Programs for Natural Resources and Biodiversity Conservation: Creating Super Trees for the Future

  • Chapter
  • First Online:
Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery

Abstract

Owing to the increasing human population and the increasing global demand for wood, its consumption is exceeding the natural rate of regeneration in many areas worldwide. Despite only 3% of the world’s forested land is plantation forest, plantations are highly productive; and with further improvement in genetic composition of planting stock as well as applying biotechnology, additional productivity increases can be obtained. For this reason, it is necessary to enrich traditional breeding programs with biotechnological tools able to increase the quantity and quality of the forestry plants produced. FAO’s definition of forest biotechnology encompasses different techniques for cloning forest trees. Forestry companies are currently considering clonal propagation as a good source of forestry plants. Clonal propagation can be achieved by various means: grafting, rooting of cuttings, coppicing, or in vitro propagation. Several methods of clonal propagation are being practiced with conifers. Along this chapter, a summary of some of the different approaches to improve Pinus spp. clonal propagation will be described, particularly those made in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja, M. R. (1988). Biotechnology and clonal Forestry. In M. R. Ahuja & W. J. Lobby (Eds.), Clonal Forestry I: Genetics and Biotechnology (pp. 135–144). Berlin: Springer-Verlag.

    Google Scholar 

  • Aitken-Christie, J., Singh, A. P., & Davies, H. (1988). Multiplication of meristematic tissue: A new tissue culture system for radiata pine. In J. W. Hanover & D. E. Keathley (Eds.), Genetic manipulation of woody plants (Biotechnology and clonal forestry) (pp. 413–432). New York: Plenum Publishing Corp.

    Google Scholar 

  • Alonso, P., Moncaleán, P., Centeno, M. L., Fernández, B., Rodríguez, A., & Ordás, R. (2006). An improved micropropagation protocol for stone pine (Pinus pinea L.). Annals of Forest Science, 63(8), 879–885.

    CAS  Google Scholar 

  • Álvarez, J. M., Majada, J., & Ordás, R. J. (2009). An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry, 82(2), 175–184.

    Google Scholar 

  • Aronen, T., Pehkonen, T., & Ryynänen, L. (2009). Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scandinavian Journal of Forest Research, 24, 372–383.

    Google Scholar 

  • Bairu, M. W., Stirk, W. A., Dolezal, K., & Van Staden, J. (2007). Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell, Tissue and Organ Culture, 90, 15–23.

    CAS  Google Scholar 

  • Bielach, A., Hrtyan, M., & Tognetti, V. B. (2017). Plants under stress: Involvement of auxin and cytokinin. International Journal of Molecular Sciences, 18(7), art. no. 1427.

    Google Scholar 

  • Bonga, J. M. (2015). A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Canadian Journal of Forest Research, 45(4), 379–383.

    Google Scholar 

  • Bonga, J. M. (2017). Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees: Structure and Function, 31(3), 781–789.

    CAS  Google Scholar 

  • Cortizo, M., de Diego, N., Moncaleán, P., & Ordás, R. J. (2009). Micropropagation of adult stone pine (Pinus pinea L.). Trees: Structure and Function, 23(4), 835–842.

    Google Scholar 

  • De Diego, N., Montalbán, I. A., Fernandez De Larrinoa, E., & Moncaleán, P. (2008). In vitro regeneration of Pinus pinaster adult trees. Canadian Journal of Forest Research, 38(10), 2607–2615.

    Google Scholar 

  • De Diego, N., Montalbán, I. A., & Moncaleán, P. (2010). In vitro regeneration of adult Pinus sylvestris L. trees. South African Journal of Botany, 76, 158–162.

    Google Scholar 

  • De Diego, N., Montalbán, I. A., & Moncaleán, P. (2011). Improved micropropagation protocol for maritime pine using zygotic embryos. Scandinavian Journal of Forest Research, 26(3), 202–211.

    Google Scholar 

  • De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012). Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32(4), 435–449.

    PubMed  Google Scholar 

  • De Diego, N., Sampedro, M. C., Barrio, R. J., Saiz-Fernández, I., Moncaleán, P., & Lacuesta, M. (2013a). Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought. Tree Physiology, 33(1), 69–80.

    PubMed  Google Scholar 

  • De Diego, N., Rodríguez, J. L., Dodd, I. C., Pérez-Alfocea, F., Moncaleán, P., & Lacuesta, M. (2013b). Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering. Tree Physiology, 33(5), 537–549.

    PubMed  Google Scholar 

  • De Diego, N., Saiz-Fernández, I., Rodríguez, J. L., Pérez-Alfocea, P., Sampedro, M. C., Barrio, R. J., Lacuesta, M., & Moncaleán, P. (2015). Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. Journal of Plant Physiology, 188, 64–71.

    PubMed  Google Scholar 

  • Dumas, E., & Monteuuis, O. (1995). In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: Influence of activated charcoal. Plant Cell, Tissue and Organ Culture, 40, 231–235.

    Google Scholar 

  • Fenning, T. M., & Gershenzon, J. (2002). Where will the wood come from? Plantation forests and the role of biotechnology. Trends in Biotechnology, 20(7), 291–296.

    CAS  PubMed  Google Scholar 

  • García-Mendiguren, O., Montalbán, I. A., Goicoa, T., Ugarte, D., & Moncaleán, P. (2016). Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees: Structure and Function, 30, 949–958.

    Google Scholar 

  • Golpour, A., Siddique, M. A. M., Rodina, M., & Pšenička, M. (2016). Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: A review. Biologia, 71(8), 853–864.

    Google Scholar 

  • Hargreaves, C. L., Grace, L. J., van der Maas, S. A., Menzies, M. I., Kumar, S., Holden, D. G., Foggo, M. N., Low, C. B., & Dibley, M. J. (2005). Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Canadian Journal of Forest Research, 35(11), 2629–2641.

    Google Scholar 

  • Hazarika, B. N. (2006). Morpho-physiological disorders in in vitro culture of plants. Scientia Horticulturae, 108, 105–120.

    CAS  Google Scholar 

  • Hugues-Jarlet, E., & Nitsch, C. (1988). Étude préliminaire de l’utilisation des bourgeons floraux de Pinus pinaster Sol. In Micropropagation vegetative in vitro. Comptes Rendus. Académie des Sciences, 307(3), 875–880.

    Google Scholar 

  • Jones, N. B., & van Staden, J. (2001). Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cellular & Developmental Biology. Plant, 37, 543–549.

    Google Scholar 

  • Klimaszewska, K., Park, Y. S., Overton, C., Maceacheron, I., & Bonga, J. M. (2001). Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cellular & Developmental Biology. Plant, 37, 392–399.

    Google Scholar 

  • Klemš M., Slámová Z., Motyka V., Malbeck J., Trávníčková A., Macháčková I., et al. (2011). Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regul. 65, 427–437.

    Google Scholar 

  • Kohli, A., Sreenivasulu, N., Lakshmanan, P., & Kumar, P. P. (2013). The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 32, 945–957.

    CAS  PubMed  Google Scholar 

  • Kvaalen, H., & Johnsen, Ø. (2008). Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. The New Phytologist, 177, 49–59.

    PubMed  Google Scholar 

  • Lambardi, M., Sharma, K. K., & Thorpe, T. A. (1993). Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cellular & Developmental Biology. Plant, 29, 189–199.

    Google Scholar 

  • Ling, X., & Leung, D. (2002). Culture of isolated zygotic embryos of Pinus radiata D. Don. Part II: Biochemical changes associated with the conversion of isolated embryos. In Vitro Cellular & Developmental Biology - Plant 38(2), 198–202.

    Google Scholar 

  • Machado, C. A., Moura, C. R. F., Lemos, E. E. P., Ramos, S. R. R., Ribeiro, F. E., & Lédo, A. S. (2014). Viabilidade de grãos de pólen de acessos de coqueiro em baixas temperaturas. Acta Scientiarum Agronomy, 36, 227–232.

    Google Scholar 

  • Merkle, S. A., Montello, P. M., Xia, X., Upchurch, B. L., & Smith, D. R. (2006). Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiology, 26, 187–194.

    PubMed  Google Scholar 

  • Mok, D. W. S., & Mok, M. C. (2001). Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89–118.

    CAS  PubMed  Google Scholar 

  • Moncaleán, P., Alonso, P., Centeno, M. L., Cortizo, M., Rodríguez, A., Fernández, B., & Ordás, R. J. (2005). Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiology, 25(1), 1–9.

    PubMed  Google Scholar 

  • Moncaleán, P., García-Mendiguren, O., Novák, O., Strnad, M., Goicoa, T., Ugarte, M. D., & Montalbán, I. A. (2018). Temperature and water availability during maturation affect the cytokinins and auxins profile of radiata pine somatic embryos. Frontiers in Plant Science, 9, 1–13.

    Google Scholar 

  • Montalbán, I. A., & Moncaleán, P. (2017). Long term conservation at −80°C of Pinus radiata embryogenic cell lines: Recovery, maturation and germination. CryoLetters, 38(3), 202–209.

    PubMed  Google Scholar 

  • Montalbán, I. A., & Moncaleán, P. (2019). Rooting of Pinus radiata somatic embryos: Factors involved in the success of the process. Journal of Forest Research, 30(1), 65–71.

    Google Scholar 

  • Montalbán, I. A., De Diego, N., & Moncaleán, P. (2010). Bottlenecks in Pinus radiata somatic embryogenesis: Improving maturation and germination. Trees: Structure and Function, 24, 1061–1071.

    Google Scholar 

  • Montalbán, I. A., De Diego, N., & Moncaleán, P. (2011). Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequence ex vitro performance in Pinus radiata. Forestry, 84(4), 363–373.

    Google Scholar 

  • Montalbán, I. A., De Diego, N., & Moncaleán, P. (2012). Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiologiae Plantarum, 34(2), 451–460.

    Google Scholar 

  • Montalbán, I. A., Setién-Olarra, A., Hargreaves, C. L., & Moncaleán, P. (2013). Somatic embryogenesis in Pinus halepensis Mill.: An important ecological species from the Mediterranean forest. Trees: Structure and Function, 27(5), 1339–1351.

    Google Scholar 

  • Montalbán, I. A., García-Mendiguren, O., Goicoa, T., Ugarte, M. D., & Moncaleán, P. (2015). Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forest, 46(2), 309–317.

    Google Scholar 

  • Montalbán, I. A., García-Mendiguren, O., & Moncaleán, P. (2016). Somatic embryogenesis in Pinus spp. Methods in Molecular Biology, 1359, 405–415.

    PubMed  Google Scholar 

  • Monteuuis, O., Goh, D. K. S., Garcia, C., Alloysius, D., Gidiman, J., Bacilieri, R., & Chaix, G. (2011). Genetic variation of growth and tree quality traits among 42 diverse genetic origins of Tectona grandis planted under humid tropical conditions in Sabah, East Malaysia. Tree Genetics & Genomes, 7(6), 1263–1275.

    Google Scholar 

  • Nugent, G., Chandler, S. F., Whiteman, P., & Stevenson, T. W. (2001). Adventitious bud induction in Eucalyptus globulus Labill. In Vitro Cellular & Developmental Biology. Plant, 37, 388–391.

    CAS  Google Scholar 

  • Panis, B., & Lambardi, M. (2006). Status of cryopreservation technologies in plants (crops and forest trees). In J. Ruane & A. Sonnino (Eds.), The role of biotechnology in exploring and protecting agricultural genetic resources (pp. 61–78). Rome: FAO.

    Google Scholar 

  • Park, Y. S. (2002). Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Annals of Forest Science, 59, 651–656.

    Google Scholar 

  • Park, Y. S., Lelu-Walter, M. A., Harvengt, L., Trontin, J. F., MacEacheron, I., Klimaszewska, K., & Bonga, J. M. (2006). Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell, Tissue and Organ Culture, 86, 87–101.

    Google Scholar 

  • Park, Y. S., Beaulieu, J., & Bousquet, J. (2016). In Y. S. Park, J. M. Bonga, & H. K. Moon (Eds.), Vegetative propagation of forest trees (pp. 302–322). Multi-varietal forestry integrating genomic selection and somatic embryogenesis. Suwon: National Institute of Forest Science.

    Google Scholar 

  • Percy, R. E., Klimaszewska, K., & Cyr, D. R. (2000). Evaluation of somatic embryogenesis for clone propagation of western white pine. Canadian Journal of Forest Research, 30, 1867–1876.

    Google Scholar 

  • Pereira, C., Montalbán, I. A., García-Mendiguren, O., Goicoa, T., Ugarte, D., Correia, S., Canhoto, J. M., & Moncaleán, P. (2016). Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. Journal of Forest Research, 21, 143–150.

    CAS  Google Scholar 

  • Pereira, C., Montalbán, I. A., Goicoa, T., Ugarte, M. D., Correia, S., Canhoto, J. M., et al. (2017). The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis. Forest Systems, 26, 1–4.

    Google Scholar 

  • Pullmann, G. S., Johnson, S., Van Tassel, S., & Zhang, Y. (2004). Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas-fir (Pseudotsuga menziesii): Improving culture initiation with MES pH buffer, biotin, and folic acid. Plant Cell, Tissue and Organ Culture, 80, 91–103.

    Google Scholar 

  • Ramage, C. M., & Williams, R. R. (2004). Cytokinin-induced abnormal shoot organogenesis is associated with elevated Knotted1-type homeobox gene expression in tobacco. Plant Cell Reports, 22, 919–924.

    CAS  PubMed  Google Scholar 

  • Reinert, J. (1958). Morphogenese und lhre Kontrolle ah Gewebekulturen aus Carotten. Naturwissenschaften, 45, 344–345.

    CAS  Google Scholar 

  • Salajova, T., & Salaj, J. (2005). Somatic embryogenesis in Pinus nigra: Embryogenic tissue initiation, maturation and regeneration ability of established cell lines. Biologia Plantarum, 49, 333–339.

    CAS  Google Scholar 

  • Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 11, 118–131.

    CAS  PubMed  Google Scholar 

  • Stange, C., Prehn, D., Gebauer, M., & Arce-Johnson, P. (1999). Optimization of in vitro culture conditions for Pinus radiata embryos and histological characterization of regenerated shoots. Biological Research, 32, 19–28.

    Google Scholar 

  • Steward, F. C. (1958). Growth and organizer developmet of cultured cells. lIl. Intrerpretation of the growth from free cell carrot plant. Journal of Botany, 45, 709–713.

    Google Scholar 

  • Stirk, W. A., Gold, J. D., Novák, O., Strnad, M., & Van Staden, J. (2005). Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regulation, 47, 1–7.

    CAS  Google Scholar 

  • Strnad, M. (1997). The aromatic cytokinins. Physiologia Plantarum, 101, 674–688.

    CAS  Google Scholar 

  • Tang, W., & Newton, R. J. (2005). Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.). Plant Cell Reports, 24, 1–9.

    CAS  PubMed  Google Scholar 

  • Thorpe, T. A., Harry, I. S., & Kumar, P. P. (1991). Application of micropropagation to forestry. In P. C. Debergh & R. H. Zimmerman (Eds.), Micropropagation (pp. 311–336). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • von Arnold, S., & Eriksson, T. (1984). Effect of agar concentration on growth and anatomy of adventitious shoots of Picea abies (L.) Karst. Plant Cell, Tissue and Organ Culture, 3, 257–264.

    Google Scholar 

  • von Arnold, S., & Hawes, C. (1989). Differentiation of bud meristems and cataphylls during adventitious bud formation on embryos of Picea abies. Canadian Journal of Botany, 67, 422–428.

    Google Scholar 

  • Yildirim, T., Kaya, Z., & Isik, K. (2006). Induction of embryogenic tissue and maturation of somatic embryos in Pinus brutia TEN. Plant Cell, Tissue and Organ Culture, 87, 67–76.

    CAS  Google Scholar 

  • Zander, J., Bruegel, M., Kleinhempel, A., Becker, S., Petros, S., Kortz, L., Dorow, J., Kratzsch, J., Baber, R., Ceglarek, U., Thiery, J., & Teupser, D. (2014). Effect of biobanking conditions on short-term stability of biomarkers in human serum and plasma. Clinical Chemistry and Laboratory Medicine, 52, 629–663.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MULTIFOREVER (Project MULTIFOREVER is supported under the umbrella of ERA-NET cofund Forest Value by ANR (FR), FNR (DE), MINCyT (AR), MINECO-AEI (ES), MMM (FI) and VINNOVA (SE). Forest value has received funding from the European Union’s Horizon 2020 research and innovation programmed under agreement Nº 773324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Moncaleán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montalbán, I.A., Castander-Olarieta, A., Pereira, C., Canhoto, J., Moncaleán, P. (2020). Use of Biotechnology in Forestry Breeding Programs for Natural Resources and Biodiversity Conservation: Creating Super Trees for the Future. In: Chong, P., Newman, D., Steinmacher, D. (eds) Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer, Cham. https://doi.org/10.1007/978-3-030-51358-0_6

Download citation

Publish with us

Policies and ethics