Skip to main content

Exploring the Monero Peer-to-Peer Network

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12059))

Included in the following conference series:

Abstract

As of September 2019, Monero is the most capitalized privacy-preserving cryptocurrency, and is ranked tenth among all cryptocurrencies. Monero’s on-chain data privacy guarantees, i.e., how mixins are selected in each transaction, have been extensively studied. However, despite Monero’s prominence, the network of peers running Monero clients has not been analyzed. Such analysis is of prime importance, since potential vulnerabilities in the peer-to-peer network may lead to attacks on the blockchain’s safety (e.g., by isolating a set of nodes) and on users’ privacy (e.g., tracing transactions flow in the network).

This paper provides the first step study on understanding Monero’s peer-to-peer (P2P) network. In particular, we deconstruct Monero’s P2P protocol based on its source code, and develop a toolset to explore Monero’s network, which allows us to infer its topology, size, node distribution, and node connectivity. During our experiments, we collected 510 GB of raw data, from which we extracted 21,678 IP addresses of Monero nodes distributed in 970 autonomous systems. We show that Monero’s network is highly centralized—13.2% of the nodes collectively maintain 82.86% of the network connections. We have identified approximately 2,758 active nodes per day, which is 68.7% higher than the number reported by the MoneroHash mining pool. We also identified all concurrent outgoing connections maintained by Monero nodes with very high probability (on average 97.98% for nodes with less than 250 outgoing connections, and 93.79% for nodes with more connections).

J. Yu and J. Decouchant—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://coinmarketcap.com. Data fetched on Sept. 12, 2019.

  2. 2.

    https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a7a942b9285d2/src/p2p/net_peerlist.h.

  3. 3.

    Commit hash 14a5c2068f53cfe1af3056375fed2587bc07d320, https://github.com/monero-project/monero.

  4. 4.

    https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/.

  5. 5.

    https://nmap.org/.

  6. 6.

    We set \(\mu \) to the value of the IDLE_HANDSHAKE interval, i.e., 60 seconds.

  7. 7.

    We use the whois (https://www.ultratools.com/tools/ipWhoisLookup) database to find the ASN for each IP address.

  8. 8.

    https://github.com/monero-project/monero/issues/5314.

  9. 9.

    http://moneropools.com/.

  10. 10.

    https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net_node.inl.

  11. 11.

    Hidden IP address to protect the privacy of this light node.

References

  1. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: USENIX Security Symposium (2015)

    Google Scholar 

  2. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on Ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive 2018/236 (2018)

    Google Scholar 

  3. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In: IEEE Security and Privacy (SP) (2017)

    Google Scholar 

  4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy (SP), May 2015

    Google Scholar 

  5. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin P2P network. In: ACM CCS (2014)

    Google Scholar 

  6. Biryukov, A., Tikhomirov, S.: Deanonymization and linkability of cryptocurrency transactions based on network analysis. In: EuroS&P (2019)

    Google Scholar 

  7. Natoli, C., Yu, J., Gramoli, V., Veríssimo, P.J.E.: Deconstructing blockchains: a comprehensive survey on consensus, membership and structure. CoRR (2019)

    Google Scholar 

  8. Möser, M., et al.: An empirical analysis of traceability in the monero blockchain. PoPETs 2018(3), 143–163 (2018)

    Google Scholar 

  9. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9

    Chapter  Google Scholar 

  10. Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New empirical traceability analysis of cryptonote-style blockchains. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 133–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_9

    Chapter  Google Scholar 

  11. Yu, J., Au, M.H.A., Veríssimo, P.: Re-thinking untraceability in the cryptonote-style blockchain. In: IEEE Computer Security Foundations Symposium (CSF) (2019)

    Google Scholar 

  12. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yu, J.: On the unforkability of Monero. In: ACM Asia Conference on Information, Computer and Communications Security (ASIACCS) (2019)

    Google Scholar 

  13. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack (2016)

    Google Scholar 

  14. Natoli, C., Gramoli, V.: The balance attack or why forkable blockchains are ill-suited for consortium. In: DSN (2017)

    Google Scholar 

  15. Ekparinya, P., Gramoli, V., Jourjon, G.: Impact of man-in-the-middle attacks on Ethereum. In: SRDS (2018)

    Google Scholar 

  16. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: IEEE P2P (2013)

    Google Scholar 

  17. Koshy, D.: An Analysis of Anonymity in Bitcoin Using P2P Network Traffic. Pennsylvania State University (2013)

    Google Scholar 

  18. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the topology of the bitcoin peer-to-peer network. In: IEEE UIC (2016)

    Google Scholar 

  19. MoneroHash: Monerohash - monero mining pool (2018). https://monerohash.com/nodes-distribution.html. Accessed 23 Dec 2018–30 Dec 2018

  20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  22. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

    Google Scholar 

  23. Bitnodes: Bitnodes (2018). https://bitnodes.earn.com/nodes/. Accessed 23 Dec 2018–30 Dec 2018

  24. Ethernodes: Ethernodes (2018). https://www.ethernodes.org/network/1. Accessed 23 Dec 2018–30 Dec 2018

  25. Neudecker, T.: Characterization of the bitcoin peer-to-peer network (2015–2018) (2019). http://dsn.tm.kit.edu/bitcoin/publications/bitcoin_network_characterization.pdf

  26. Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring ethereum network peers. In: ACM IMC (2018)

    Google Scholar 

  27. Singh, A., Castro, M., Druschel, P., Rowstron, A.: Defending against eclipse attacks on overlay networks. In: Proceedings of the 11th Workshop on ACM SIGOPS European Workshop. EW 11 (2004)

    Google Scholar 

  28. Croman, K., et al.: On scaling decentralized blockchains - (A position paper). In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8

    Chapter  Google Scholar 

  29. Miller, A., et al.: Discovering bitcoin’s public topology and influential nodes (2015)

    Google Scholar 

  30. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumulation and double spends for topology inference in bitcoin. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 113–126. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_9

    Chapter  Google Scholar 

  31. Delgado-Segura, S., et al.: TxProbe: discovering bitcoin’s network topology using orphan transactions. CoRR (2018)

    Google Scholar 

  32. Fanti, G., Viswanath, P.: Deanonymization in the bitcoin P2P network. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Fonds National de la Recherche Luxembourg (FNR) through PEARL grant FNR/P14/8149128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangshan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, T., Yu, J., Decouchant, J., Luo, X., Verissimo, P. (2020). Exploring the Monero Peer-to-Peer Network. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51280-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51279-8

  • Online ISBN: 978-3-030-51280-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics