Abstract
We present the first treatment of non-interactive publicly-verifiable timestamping schemes in the Universal Composability framework. Inspired by the timestamping properties of Bitcoin, we use non-parallelizable computational work that relates to elapsed time to avoid previous impossibility results on non-interactive timestamping. We introduce models of verifiable delay functions (VDF) related to a clock and non-interactive timestamping in the UC-framework. These are used to present a secure construction that provides improvements over previous concrete constructions. Namely, timestamps forged by the adversary are now limited to a certain time-window that depends only on the adversary’s ability to compute VDFs more quickly and on the length of corruption. Finally, we discuss how our construction can be added to non-PoW blockchain protocols to prevent costless simulation attacks.
Keywords
- Non-interactive cryptographic timestamping
- Universal composability
- Verifiable delay functions
- Time-lock cryptography
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
- 3.
That is, \(x_{i+1}=a||\mathsf {H}(x_i)||b\) for some \(a,b\in \{0,1\}^*\).
References
Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge proofs -timestamping in the blockchain era-. Cryptology ePrint Archive, Report 2019/644 (2019). https://eprint.iacr.org/2019/644
Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11
Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25
Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018). http://eprint.iacr.org/2018/712
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 2001 Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2019). v.20190826:041954 https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2000/067&version=20190826:041954&file=067.pdf
Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_15
David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3
Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol. 3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791
Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27
Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential work. In: ICTS, pp. 373–388. ACM (2013)
Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 460–476. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_28
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 International Financial Cryptography Association
About this paper
Cite this paper
Landerreche, E., Stevens, M., Schaffner, C. (2020). Non-interactive Cryptographic Timestamping Based on Verifiable Delay Functions. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-51280-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51279-8
Online ISBN: 978-3-030-51280-4
eBook Packages: Computer ScienceComputer Science (R0)
