Boomerang: Redundancy Improves Latency and Throughput in Payment-Channel Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12059)


In multi-path routing schemes for payment-channel networks, Alice transfers funds to Bob by splitting them into partial payments and routing them along multiple paths. Undisclosed channel balances and mismatched transaction fees cause delays and failures on some payment paths. For atomic transfer schemes, these straggling paths stall the whole transfer. We show that the latency of transfers reduces when redundant payment paths are added. This frees up liquidity in payment channels and hence increases the throughput of the network. We devise Boomerang, a generic technique to be used on top of multi-path routing schemes to construct redundant payment paths free of counterparty risk. In our experiments, applying Boomerang to a baseline routing scheme leads to 40% latency reduction and 2\({\times }\) throughput increase. We build on ideas from publicly verifiable secret sharing, such that Alice learns a secret of Bob iff Bob overdraws funds from the redundant paths. Funds are forwarded using Boomerang contracts, which allow Alice to revert the transfer iff she has learned Bob’s secret. We implement the Boomerang contract in Bitcoin Script.


Payment-channel networks Redundancy Atomic multi-path Routing Throughput Latency Adaptor signatures 



We thank Giulia Fanti and Lei Yang for fruitful discussions. VB and DT are supported by the Center for Science of Information, an NSF Science and Technology Center, under grant agreement CCF-0939370. JN is supported by the Reed-Hodgson Stanford Graduate Fellowship. Icons from ‘Twemoji v12.0’ ( by Twitter, Inc and other contributors, licensed under CC BY 4.0.

Supplementary material


  1. 1.
    Aktas, M.F., Soljanin, E.: Straggler mitigation at scale (2019).
  2. 2.
    Bagaria, V., Neu, J., Tse, D.: Boomerang: redundancy improves latency and throughput in payment-channel networks (2019).
  3. 3.
    Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987). Scholar
  4. 4.
    Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: Proceedings of ACM SIGCOMM, Vancouver, B.C., Canada, pp. 56–67 (1998).
  5. 5.
    Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013). Scholar
  6. 6.
    Decker, C., Russell, R., Osuntokun, O.: eltoo: a simple layer2 protocol for Bitcoin. Technical report (2018).
  7. 7.
    Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). Scholar
  8. 8.
    Di Stasi, G., Avallone, S., Canonico, R., Ventre, G.: Routing payments on the Lightning network. In: Proceedings of IEEE iThings/GreenCom/CPSCom/SmartData, pp. 1161–1170 (2018).
  9. 9.
    Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs over cryptocurrencies (2017).
  10. 10.
    Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Proceedings of ACM SIGSAC, pp. 949–966, Toronto, Canada (2018).
  11. 11.
    Elias, P.: Coding for two noisy channels. In: Information Theory, pp. 61–74. Academic Press (1956)Google Scholar
  12. 12.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438, October 1987.
  13. 13.
    Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: off the chain transactions (2019).
  14. 14.
    Hoenisch, P., Weber, I.: AODV–based routing for payment channel networks. In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 107–124. Springer, Cham (2018). Scholar
  15. 15.
    Jourenko, M., Kurazumi, K., Larangeira, M., Tanaka, K.: SoK: a taxonomy for layer-2 scalability related protocols for cryptocurrencies (2019).
  16. 16.
    Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks (2017).
  17. 17.
    Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., Ramchandran, K.: Speeding up distributed machine learning using codes. IEEE Trans. Inf. Theory 64(3), 1514–1529 (2018). Scholar
  18. 18.
    Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T., Minder, L.: RaptorQ forward error correction scheme for object delivery. RFC 6330 (2011).
  19. 19.
    Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: enforcing security and privacy in decentralized credit networks (2016).
  20. 20.
    Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures with applications to Bitcoin (2018).
  21. 21.
    Miller, A., Bentov, I., Kumaresan, R., Cordi, C., McCorry, P.: Sprites and state channels: payment networks that go faster than Lightning (2017).
  22. 22.
    Moreno-Sanchez, P., Kate, A.: Scriptless scripts with ECDSA (2018).
  23. 23.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report (2008).
  24. 24.
    Osuntokun, O.: AMP: atomic multi-path payments over Lightning (2018).
  25. 25.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). Scholar
  26. 26.
    Piatkivskyi, D., Nowostawski, M.: Split payments in payment networks. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Livraga, G., Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 67–75. Springer, Cham (2018). Scholar
  27. 27.
  28. 28.
    Poon, J., Dryja, T.: The Bitcoin Lightning network: scalable off-chain instant payments. Technical report (2016).
  29. 29.
    Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an approach to routing in Lightning network (2016)Google Scholar
  30. 30.
    Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private: efficient decentralized routing for path-based transactions (2017).
  31. 31.
    Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). Scholar
  32. 32.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). Scholar
  33. 33.
    Sivaraman, V., Venkatakrishnan, S.B., Alizadeh, M., Fanti, G., Viswanath, P.: Routing cryptocurrency with the Spider network (2018).
  34. 34.
    Wang, P., Xu, H., Jin, X., Wang, T.: Flash: efficient dynamic routing for offchain networks (2019).

Copyright information

© International Financial Cryptography Association 2020

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations