Skip to main content

Conceptual Models for Environmental Engineering Related to Subsurface Flow and Transport

  • Chapter
  • First Online:
Subsurface Environmental Modelling Between Science and Policy

Abstract

This chapter aims at providing an overview of research related to subsurface flow and transport modelling. We address the existing literature and discuss the role of modelling for engineering activities in the subsurface. For environmental applications, modelling is typically employed to quantify risk scenarios and corresponding uncertainties which arise from different origins. One source of uncertainty is, of course, the degree of abstraction that is applied to describe the relevant physics (or chemistry, if necessary) in a problem of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aziz K, Settari A (1979) Petroleum reservoir simulation. Applied Science Publishers

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, Amsterdam

    Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • Beck M (2018) Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes. PhD thesis, University of Stuttgart

    Google Scholar 

  • Beck M, Seitz G, Class H (2016) Volume-based modelling of fault reactivation in porous media using a visco-elastic proxy model. Transp Porous Media 114:505–524

    Article  Google Scholar 

  • Beck M, Rinaldi AP, Flemisch B, Class H (2020) Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes. Comput Geosci. https://doi.org/10.1007/s10596-020-09987-w

  • Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 25:182–185

    Article  Google Scholar 

  • Brooks A, Corey A (1964) Hydraulic properties of porous media. Hydrol Pap, Colorado State University, Fort Collins

    Google Scholar 

  • Buckingham E (1907) Studies on the movement of soil moisture. Bulletin 38. USDA Bureau of Soils, Washington, DC

    Google Scholar 

  • Chavent G, Jaffre J (1978) Mathematical models and finite elements for reservoir simulation. North-Holland

    Google Scholar 

  • Class H (2008) Models for non-isothermal compositional gas-liquid flow and transport in porous media. Habilitation thesis, University of Stuttgart

    Google Scholar 

  • Darcis M (2013) Coupling models of different complexity for the simulation of CO\(_2\)storage in deep saline aquifers. PhD thesis, University of Stuttgart

    Google Scholar 

  • Darcy H (1856) Les fontaines de la ville de Dijon. Dalmont, Paris

    Google Scholar 

  • de Boer R, Ehlers W (1990) The development of the concept of effective stresses. Acta Mechanica 83:77–92

    Article  Google Scholar 

  • Helmig R (1997) Multiphase flow and transport processes in the subsurface. Springer, Berlin

    Google Scholar 

  • Hirschfelder J, Curtiss C, Bird R (1954) Molecular theory of gases and liquids. Wiley, Hoboken

    Google Scholar 

  • Hommel J, Lauchnor E, Phillips A, Gerlach R, Cunningham A, Helmig R, Ebigbo A, Class H (2015) A revised model for microbially induced calcite precipitation: improvements and new insights based on recent experiments. Water Resour Res 51:3695–3715

    Article  Google Scholar 

  • Hommel J, Lauchnor E, Gerlach R, Cunningham A, Ebigbo A, Helmig R, Class H (2016) Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media. Transp Porous Media 114:557–579

    Article  Google Scholar 

  • Hommel J, Coltman E, Class H (2018) Porosity-permeability relations for evolving pore space: a review with a focus on (bio-)geochemically altered porous media. Transp Porous Media 124:589–629

    Article  Google Scholar 

  • Huyakorn P, Pinder G (1983) Computational methods in subsurface flow. Academic, Cambridge

    Google Scholar 

  • IPCC (2005) Special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaplan S (1997) The words of risk analysis. Risk Anal 17:407–417

    Article  Google Scholar 

  • Kaplan S, Garrick B (1981) On the quantitative definition of risk. Risk Anal 1:11–27

    Article  Google Scholar 

  • Kissinger A, Noack V, Knopf S, Konrad W, Scheer D, Class H (2017) Regional-scale brine migration along vertical pathways due to CO\(_2\) injection - part 2: a simulated case study in the north german basin. Hydrol Earth Syst Sci 21:2751–2775

    Article  Google Scholar 

  • Kopp A, Binning P, Johannsen K, Helmig R, Class H (2010) A contribution to risk analysis for leakage through abandoned wells in geological CO\(_2\) storage. Adv Water Resour 33:867–879

    Article  Google Scholar 

  • Looney B, Falta R (2000) Vadose zone. Battelle Press

    Google Scholar 

  • Parker J, Lenhard R, Kuppusami T (1987) A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour Res 23(4):618–624

    Article  Google Scholar 

  • Poling B, Prausnitz J, O’Connel J (2001) The properties of gases and liquids. McGraw-Hill, Inc., New York

    Google Scholar 

  • Richards L (1931) Capillary conduction of liquids through porous mediums. PhD thesis, Cornell University

    Google Scholar 

  • Scheidegger A (1974) The physics of flow through porous media, 3rd edn. University of Toronto Press, Toronto

    Google Scholar 

  • Terzaghi K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsberichte Akademie der Wissenschaften (Wien), Math.-naturwiss. Klasse, Abt. IIa 132:25–138

    Google Scholar 

  • Van Genuchten R (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vargaftik N (1975) Tables on the thermophysical properties of liquids and gases, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Walker WE, Harremoës P, Rotmans J, van der Sluijs JP, van Asselt MB, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4:5–17

    Article  Google Scholar 

  • Walter L, Binning P, Oladyshkin S, Flemisch B, Class H (2012) Brine migration resulting from CO\(_2\) injection into saline aquifers - an approach to risk estimation including various levels of uncertainty. Int J Greenh Gas Control 9:495–506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Scheer .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scheer, D., Class, H., Flemisch, B. (2021). Conceptual Models for Environmental Engineering Related to Subsurface Flow and Transport. In: Subsurface Environmental Modelling Between Science and Policy. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-51178-4_2

Download citation

Publish with us

Policies and ethics