Skip to main content

Abstract

Groundwater, resources, hidden secrets from the past... The subsurface contains all this and has consequently attracted the attention of engineers, geologists and many others. Groundwater has always served as a major source of drinking water and its protection is and will remain a top-priority task, not only for arid regions, but for all countries worldwide. Recently, however, the subsurface has received increasing attention from environmental engineering. There are several reasons for this, one of the most prominent being the transition in energy-supply technologies from fossil-fuel-dominated sources to those of sustainable energy (German: Energiewende).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer S, Dahmke A, Kolditz O (2017) Subsurface energy storage: geological storage of renewable energy - capacities, induced effects and implications. Environ Earth Sci 76:695

    Article  Google Scholar 

  • Beyme K (1997) Der Gesetzgeber: Der Bundestag als Entscheidungszentrum. VS Verlag für Sozialwissenschaften, Wiesbaden

    Google Scholar 

  • BMWi (2016) The energy of the future - sixth ”energy transition” monitoring report. Technical report, German Federal Ministry for Economic Affairs and Energy. https://www.bmwi.de/Redaktion/EN/Publikationen/Energie/sechster-monitoring-bericht-zur-energiewende-langfassung.pdf? __blob=publicationFile&v=6. Accessed 21 Nov 2019

  • Brugnach M, Tagg A, Keil F, de Lange WJ (2007) Uncertainty matters: computer models at the science-policy interface. Water Resour Manag 21:1075–1090

    Article  Google Scholar 

  • Bundesregierung (2010) Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorung. Technical report, Bundesregierung der Bundesrepublik Deutschland. https://www.bmwi.de/BMWi/Redaktion/PDF/E/energiekonzept-2010,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf. Accessed 23 Apr 2019

  • Donoho DL, Maleki A, Rahman IU, Shahram M, Stodden V (2008) Reproducible research in computational harmonic analysis. Comput Sci Eng 11:8–18

    Article  Google Scholar 

  • Fisher E, Pascual P, Wagner W (2010) Understanding environmental models in their legal and regulatory context. J Environ Law 22:251–283

    Article  Google Scholar 

  • Grunwald A (2000) Technikfolgenabschätzung als wissenschaftliche Politikberatung am Deutschen Bundestag. Denkstrome J Sachs Akad Wiss 64–82

    Google Scholar 

  • Hellström T (1996) The science-policy dialogue in transformation: model-uncertainty and environmental policy. Sci Public Policy 23, 91–97

    Google Scholar 

  • Henning H-M, Palzer A (2012) 100% Erneuerbare Energien für Strom und Wärme in Deutschland. Technical report, Fraunhofer ISE. https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/studie-100-erneuerbare-energien-in-deutschland.pdf. Accessed 23 Apr 2019

  • Ivanovic RF, Freer JE (2009) Science versus politics: truth and uncertainty in predictive modelling. Hydrol Process 23:2549–2554

    Article  Google Scholar 

  • Kühn M, Nakaten N, Streibel M, Kempka T (2013) Klimaneutrale Flexibilisierung regenerativer Überschussenenergie mit Untergrundspeichern. Erdöl Erdgas Kohle 129:348–352

    Google Scholar 

  • Kühn M, Streibel M, Nakaten N, Kempka T (2014) Integrated underground gas storage of CO\(_2\) and CH\(_4\) to decarbonise the “power-to-gas-to-gas-to-power” technology. Energy Procedia 59:9–15

    Article  Google Scholar 

  • Landesamt für Bergbau (2015) Energie und Geologie, Niedersachsen. Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle (Urban-Verlag) 131:398–406

    Google Scholar 

  • LeVeque RJ, Mitchell IM, Stodden V (2012) Reproducible research for scientific computing: tools and strategies for changing the culture. Comput Sci Eng 14:13

    Article  Google Scholar 

  • Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) (2005b) IPCC. Special report on carbon dioxide capture and storage. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  • Petersen A (2006) Simulating nature: a philosophical study of computer-simulation uncertainties and their role in climate science and policy advice. Het Spinhuis

    Google Scholar 

  • Reed DA, Bajcsy R, Fernandez MA, Griffiths J-M, Mott RD, Dongarra J, Johnson CR, Inouye AS, Miner W, Matzke MK, Ponick TL (2005) Computational science: ensuring America’s competitiveness. https://apps.dtic.mil/dtic/tr/fulltext/u2/a462840.pdf. Accessed 10 Jun 2019

  • Reinhold K,üller CM (2011) Storage potential in the deeper subsurface - overview and results from the project storage catalogue of Germany. Technical report 74, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften

    Google Scholar 

  • Scheer D (2017) Between knowledge and action: Conceptualizing scientific simulation and policy-making. In: Resch M, Kaminski A, Gehring P (eds) The science and art of simulation I. Springer, Berlin, pp 103–118

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) IPCC. Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013d) IPCC. Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Wagner W, Fisher E, Pascual P (2010) Misunderstanding models in environmental and public health regulation. NYU Environ Law J 18:293–356

    Google Scholar 

  • Walter L, Binning P, Oladyshkin S, Flemisch B, Class H (2012) Brine migration resulting from CO\(_2\) injection into saline aquifers - an approach to risk estimation including various levels of uncertainty. Int J Greenh Gas Control 9:495–506

    Article  Google Scholar 

  • Wikipedia Contributors (2019) Scientific method — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Scientific_method&oldid=923957098. Accessed 21 Nov 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Scheer .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scheer, D., Class, H., Flemisch, B. (2021). Introduction. In: Subsurface Environmental Modelling Between Science and Policy. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-51178-4_1

Download citation

Publish with us

Policies and ethics