Skip to main content

The T2K Flux Calculation Tuned to Thin Target Data

  • Chapter
  • First Online:
Predicting the T2K Neutrino Flux and Measuring Oscillation Parameters

Part of the book series: Springer Theses ((Springer Theses))

  • 189 Accesses

Abstract

This chapter introduces the framework for flux calculations, developed over the years by the T2K Beam Working Group. This framework is used to predict the neutrino flux at ND280 and Super-K for every data-taking period, which is essential for making precise measurements of neutrino oscillation parameters. I have been the analyser responsible for producing such flux predictions in the last three oscillation measurements released by T2K [1,2,3], improving upon certain features of the existing code in the process. In addition, the flux tuning technique described here served as a starting point when developing the concept of replica target flux tuning, described in detail in Chap. 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FLUKA2011.2c has since become obsolete, and FLUKA2011.2x will be used for the next flux release.

  2. 2.

    often with incident proton energies lower than the 30 GeV NA61 beam.

  3. 3.

    Parametrisation named BMPT after Bonesini-Marchionni-Pietropaolo-Tabarelli de Fatis, the authors in [8].

  4. 4.

    Here, \(r_0\) and \(r_1\) are also constants to be determined from data.

  5. 5.

    The Lorentz invariant single particle phase space density is proportional to \(\frac{d^3\textit{\textbf{p}}}{E}\).

References

  1. Abe K et al (2018) (T2K Collaboration). Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 \(\times \) 1021 Protons on Target. Phys. Rev. Lett. 121, p. 171802. Accessed 17 Oct 2018. https://link.aps.org/doi/10.1103/PhysRevLett.121.171802

  2. Wascko M (2018) T2K status, results, and plans. https://doi.org/10.5281/zenodo.1286752

  3. Bench F (2019) The T2K experiment: current status and results. https://indico.cern.ch/event/773605/contributions/3498113/attachments/1897012/3130048/NuFACT2019_T2K_plenary_FBench.pdf

  4. Ferrari A et al (2005) FLUKA: a multi-particle transport code (Program version 2005)

    Google Scholar 

  5. Brun R et al (1994) GEANT detector description and simulation tool

    Google Scholar 

  6. Zeitnitz C, Gabriel TA (1994) The GEANT-CALOR interface and benchmark calculations of ZEUS test calorimeters. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 349(1):106–111. http://www.sciencedirect.com/science/article/pii/0168900294906130

  7. Tanabashi M et al (2018) (Particle Data Group) Review of particle physics. Phys. Rev. D 98:030001. https://link.aps.org/doi/10.1103/PhysRevD.98.030001

  8. Bonesini M et al (2001) On particle production for high energy neutrino beams. Eur Phys J C - Part Fields 20(1):13–27 https://doi.org/10.1007/s100520100656

  9. Abe K et al, (T2K Collaboration) (2013) The T2K neutrino flux prediction. Phys Rev D87:012001. arXiv: 1211.0469 [hep-ex]

  10. Eichten T et al (1972) Particle production in proton interactions in nuclei at 24 GeV/c. Nucl Phys B 44(2):333–343. http://www.sciencedirect.com/science/article/pii/0550321372901204

  11. Allaby JV et al (1970) High-energy particle spectra from proton interactions at 19.2 GeV/c. Technical Report 70-12, CERN

    Google Scholar 

  12. Fiorentini A et al (2016) Flux prediction and uncertainty updates with NA61 2009 thin target data and negative focussing mode predictions. www.t2k.org/docs/technotes/217

  13. Feynman RP (1969) Very high-energy collisions of hadrons. Phys Rev Lett 23:415–417. Accessed 24 Dec 1969. https://link.aps.org/doi/10.1103/PhysRevLett.23.1415

  14. Barton DS et al (1983) Experimental study of the a dependence of inclusive hadron fragmentation. Phys Rev D 27:2580–2599. Accessed 11 June 1983. https://link.aps.org/doi/10.1103/PhysRevD.27.2580

  15. Skubic P et al (1978) Neutral-strange-particle production by 300-GeV protons. Phys Rev D 18:3115–3144. Accessed 9 Nov 1978. URL: https://link.aps.org/doi/10.1103/PhysRevD.18.3115

  16. Abbott et al T, (E-802 Collaboration) (1992) Measurement of particle production in proton induced reactions at 14.6-GeV/c. Phys Rev D45:3906–3920

    Google Scholar 

  17. Apollonio M et al, (HARP Collaboration) (2009) Forward production of charged pions with incident protons on nuclear targets at the CERN PS. Phys Rev C80:035208. arXiv: 0907.3857 [hep-ex]

  18. Apollonio M et al, (HARP Collaboration) (2009) Forward production of charged pions with incident \(\pi ^{-}\) on nuclear targets measured at the CERN PS. Nucl Phys A 821(1):118–192. URL: http://www.sciencedirect.com/science/article/pii/S0375947409000232

  19. Abgrall N et al, (NA61/SHINE Collaboration) (2016) Measurements of \(\pi ^{\pm }\), K\(K^{\pm }\) , \(K_{0}^{S}\) proton production in proton-carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS. Eur Phys J C76(2):84. URL: https://doi.org/10.1140/epjc/s10052-016-3898-y

  20. Michael McCool, Arch D. Robison, and James Reinders. “Chapter 15 - Cholesky Factorization”. In: Structured Parallel Programming. Ed. by Michael McCool, Arch D. Robison, and James Reinders. Boston: Morgan Kaufmann, 2012, pp. 315-322. URL: http://www.sciencedirect.com/science/article/pii/B9780124159938000153

  21. Denisov SP et al (1973) Absorption cross-sections for pions, kaons, protons and anti-protons on complex nuclei in the 6-GeV/c to 60-GeV/c momentum range. Nucl. Phys. B 61:62–76

    Article  ADS  Google Scholar 

  22. Bellettini G et al (1966) Proton-nuclei cross sections at 20 GeV. Nucl Phys 79(3):609–624. URL: http://www.sciencedirect.com/science/article/B73DR-46YSSCV-7F/2/030e70b8f6a86f3a5cb1e16a3000ae4b

  23. Carroll AS et al (1979) Absorption cross section of [pi]\(\pm \), K\(\pm \), p and on nuclei between 60 and 280 GeV/c. Phys Lett B 80(3):319–322. URL: http://www.sciencedirect.com/science/article/B6TVN-46YKH5DWP/2/bb31d269058cc69e5d831a46acb9f345

  24. Mahajan S, Raja R (2013) Particle production measurements using the MIPP detector at fermilab. arXiv: 1311.2258 [hep-ex]

  25. Bobchenko BM et al (1979) Measurement of total inelastic cross-sections from proton interactions with nuclei in the momentum range from 5 GeV/c to 9 GeV/c and \(\pi ^{-}\) mesons with nuclei in the momentum range from 1.75 GeV/c to 6.5 GeV/c. Sov J Nucl Phys 30:805

    Google Scholar 

  26. Missert AD (2017) Neutrino oscillation measurements using a maximum likelihood event reconstruction algorithm. PhD thesis. University of Colorado at Boulder

    Google Scholar 

  27. N. Abgrall et al. Flux Prediction and Uncertainties for the 2012a Oscillation Analysis. www.t2k.org/docs/technotes/099. 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Vladisavljevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vladisavljevic, T. (2020). The T2K Flux Calculation Tuned to Thin Target Data. In: Predicting the T2K Neutrino Flux and Measuring Oscillation Parameters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-51174-6_5

Download citation

Publish with us

Policies and ethics