Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 187 Accesses

Abstract

This chapter introduces the T2K experiment, highlighting its physics goals, detector design, and major results published by the collaboration since the commencement of data-taking in January 2010. Particular emphasis is placed on the description of the T2K beamline, which is most relevant for the work presented in this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Always referring to the kinetic energy.

  2. 2.

    Pressure in the primary beamline is kept below \(3 \times 10^{-6}\) Pa to minimise the beam energy loss through interactions in residual gas.

  3. 3.

    ESM19 is used for the vertical beam centre, but not the horizontal.

  4. 4.

    99.9% branching ratio for \(\pi ^+ \rightarrow \mu ^+ + \nu _{\mu }\), rather than \(\pi ^+ \rightarrow e^+ + \nu _{e}\), due to helicity suppression.

  5. 5.

    The photodiode depletion voltage falls by 50% after a one month exposure in the T2K muon beam.

  6. 6.

    Main background for \(\nu _e\) appearance at SK.

  7. 7.

    The light is first absorbed and then reemitted with a wavelength shifted from the fibre’s absorption range.

  8. 8.

    The T2K beam energy of \({\sim }600\) MeV is too low to produce tau leptons in the final state, as demonstrated in Table 3.6.

  9. 9.

    Photons at SK can be detected via pair production, if at least one \(e^{\pm }\) is Cherenkov radiating.

References

  1. Abe K et al (T2K Collaboration) (2011) The T2K experiment. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 659(1):106–135. http://www.sciencedirect.com/science/article/pii/S0168900211011910

  2. Abe K et al (T2K Collaboration) (2014) Observation of electron neutrino appearance in a muon neutrino beam. Phys Rev Lett 112(6):061802. https://link.aps.org/doi/10.1103/PhysRevLett.112.061802

  3. Abe K et al (T2K Collaboration) (2020) Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature 580(7803):339–344. https://doi.org/10.1038/s41586-020-2177-0

  4. Suzuki K et al (2015) Measurement of the muon beam direction and muon flux for the T2K neutrino experiment. Prog Theor Exp Phys 2015(5):053C01. https://doi.org/10.1093/ptep/ptv054

  5. Bhadra S et al (2013) Optical transition radiation monitor for the T2K experiment. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 703:45–58. http://www.sciencedirect.com/science/article/pii/S0168900212013812

  6. Sekiguchi T et al (2015) Development and operational experience of magnetic horn system for T2K experiment. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 789:57–80. http://www.sciencedirect.com/science/article/pii/S0168900215004672

  7. Abgrall N et al (2011) Neutrino flux prediction. www.t2k.org/docs/technotes/038/

  8. Nakadaira T (2015) The graphite target for J-PARC neutrino beam-line. J Radioanal Nucl Chem 305(3):777–782. https://doi.org/10.1007/s10967-015-4120-7

  9. Xiao C et al (2003) An overview of integratable current sensor technologies. In: 38th IAS annual meeting on conference record of the industry applications conference, 2003, vol 2, pp 1251–1258

    Google Scholar 

  10. Ichikawa AK (2012) Design concept of the magnetic horn system for the T2K neutrino beam. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 690:27–33. http://www.sciencedirect.com/science/article/pii/S0168900212007115

  11. Abe K et al (T2K Collaboration) (2013) The T2K neutrino flux prediction. Phys Rev D 87:012001. arXiv:1211.0469 [hep-ex]

  12. Matsuoka K et al (2010) Design and performance of the muon monitor for the T2K neutrino oscillation experiment. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 624(3):591–600. http://www.sciencedirect.com/science/article/pii/S016890021002098X

  13. Luque MB et al (UA1 Collaboration) (1980) The construction of the central detector for an experiment at the CERN \(\bar{\text{p}}\)-p collider. Nucl Instrum Methods 176(1):175–180. http://www.sciencedirect.com/science/article/pii/0029554X80906990

  14. Altegoer J et al (NOMAD Collaboration) (1998) The NOMAD experiment at the CERN SPS. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 404(1):96–28. http://www.sciencedirect.com/science/article/pii/S0168900297010796

  15. Assylbekov S et al (2012) The T2K ND280 off-axis pi-zero detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 686:48–63. http://www.sciencedirect.com/science/article/pii/S0168900212005153

  16. Abgrall N et al (2011) Time projection chambers for the T2K near detectors. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 637(1):25–46. http://www.sciencedirect.com/science/article/pii/S0168900211003421

  17. Amaudruz P-A et al (2012) The T2K fine-grained detectors. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 696:1–31. http://www.sciencedirect.com/science/article/pii/S0168900212008789

  18. Charpak G et al (2002) Micromegas, a multipurpose gaseous detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 478(1):26–36. In: Proceedings of the 9th international conference on instrumentation. http://www.sciencedirect.com/science/article/pii/S0168900201017132

  19. Allan D et al (2013) The electromagnetic calorimeter for the T2K near detector ND280. J Instrum 8(10):P10019. https://doi.org/10.1088/1748-0221/8/10/p10019

  20. Yano T et al (2012) The side muon range detector for the T2K experiment. Nucl Phys B - Proc Suppl 229–232. In: Neutrino 2010, p 454. http://www.sciencedirect.com/science/article/pii/S0920563212003088

  21. Abe K et al (T2K Collaboration) (2012) Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 694:211–223. http://www.sciencedirect.com/science/article/pii/S0168900212002987

  22. Kikawa T et al (2013) INGRID new analysis technical note. www.t2k.org/docs/technotes/132

  23. Otani M et al (2012) INGRID analysis technical note. www.t2k.org/docs/technotes/041

  24. Fiorentini A et al (2016) Flux prediction and uncertainty updates with NA61 2009 thin target data and negative focussing mode predictions. www.t2k.org/docs/technotes/217

  25. Fukuda S et al (Super-Kamiokande Collaboration) (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 501(2):418–462. http://www.sciencedirect.com/science/article/pii/S016890020300425X

  26. Bugaev EV et al (1998) Atmospheric muon flux at sea level, underground, and underwater. Phys Rev D 58(5):054001. https://link.aps.org/doi/10.1103/PhysRevD.58.054001

  27. Casper D (2002) The nuance neutrino physics simulation, and the future. Nucl Phys B - Proc Suppl 112(1):161–170. http://www.sciencedirect.com/science/article/pii/S0920563202017565

  28. Formaggio JA, Zeller GP (2012) From eV to EeV: neutrino cross sections across energy scales. Rev Mod Phys 84(3):1307–1341. https://link.aps.org/doi/10.1103/RevModPhys.84.1307

  29. Himmel A et al (2015) Super-Kamiokande events and data quality studies for T2K runs 5 and 6. www.t2k.org/docs/technotes/219

  30. Abe K et al (T2K Collaboration) (2017) Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of \({\nu }_{e}\) interactions at the far detector. Phys Rev D 96(9):092006. https://link.aps.org/doi/10.1103/PhysRevD.96.092006

  31. Missert AD (2017) Neutrino oscillation measurements using a maximum likelihood event reconstruction algorithm. PhD thesis, University of Colorado at Boulder

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Vladisavljevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vladisavljevic, T. (2020). The T2K Experiment. In: Predicting the T2K Neutrino Flux and Measuring Oscillation Parameters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-51174-6_3

Download citation

Publish with us

Policies and ethics