Skip to main content

Numerical Modeling of Groundwater in Israel

  • 423 Accesses

Part of the Springer Hydrogeology book series (SPRINGERHYDRO)

Abstract

Sustainable management of groundwater in Israel is a complex task. To tackle this task, numerical models had been used extensively in Israel over the past decades. These models are computer codes that simulate the flow of water and the transport of contaminants in the aquifers. Some of them are existing software (either open source or commercial), and some were developed by Israeli hydrologists. This chapter reviews the evolution of these models and highlights some of the important results and conclusions obtained by virtue of the models.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-51148-7_17
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-51148-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abbo H, Gev I (2008) Numerical model as a predictive analysis tool for rehabilitation and conservation of the Israeli coastal aquifer: example of the Shafdan sewage reclamation project. Desalination 226(1–3):47–55

    CrossRef  Google Scholar 

  • Abbo H, Shavit U, Markel D, Rimmer A (2003) A numerical study on the influence of fractured regions on lake/groundwater interaction; the Lake Kinneret (Sea of Galilee) case. J Hydrol 283(1–4):225–243

    CrossRef  Google Scholar 

  • Adar E, Neuman S, Woolhiser D (1988) Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data, I. Mathematical model and application to synthetic data. J Hydrol 97(3):251–277. https://doi.org/10.1016/0022-1694(88)90119-9

  • Adar E, Rosenthal E, Issar A, Batelaan O (1992) Quantitative assessment of the flow pattern in the southern Arava Valley (Israel) by environmental tracers and a mixing cell model. J Hydrol 136(1–4):333–352

    CrossRef  Google Scholar 

  • Amir N, Kafri U, Herut B, Shalev E (2013) Numerical simulation of submarine groundwater flow in the coastal aquifer at the Palmahim Area, the Mediterranean Coast of Israel. Water Resour Manage 27(11):4005–4020. https://doi.org/10.1007/s11269-013-0392-2

    CrossRef  Google Scholar 

  • Asmael NM, Dupuy A, Huneau F, Hamid S, Coustumer PL (2015) Groundwater modeling as an alternative approach to limited data in the northeastern part of Mt. Hermon (Syria), to develop a preliminary water budget. Water 7(7):3978–3996

    Google Scholar 

  • Assouline S (1993) Estimation of lake hydrologic budget terms using the simultaneous solution of water, heat, and salt balances and a Kalman filtering approach: application to lake Kinneret. Water Resour Res 29(9):3041–3048

    CrossRef  Google Scholar 

  • Avisar D, Rosenthal E, Flexer A, Shulman H, Ben-Avraham Z, Guttman J (2003) Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model. J Hydrol 270(1–2):27–38

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media, vol 1. American Elsevier Publishing Company

    Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill series in Water resources and environmental engineering. New York, 463 pp

    Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic, Dordrecht

    CrossRef  Google Scholar 

  • Bear J, Dagan G (1964) Some exact solutions of interface problems by means of the hodograph method. J Geophys Res 69(8):1563–1572

    CrossRef  Google Scholar 

  • Ben-Itzhak LL, Gvirtzman H (2005) Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. J Hydrol 312(1–4):51–69

    CrossRef  Google Scholar 

  • Ben Neriah A, Paster A (2018) Air sparging: enhancing the volatilization of organic compounds through selection of optimized pulsation frequency. Paper presented at the EGU General Assembly

    Google Scholar 

  • Berger D (1999) Hydrological model for the Yarqon-Taninim aquifer. Mekorot Ltd., pp 1–47 (in Hebrew)

    Google Scholar 

  • Berkowitz B, Scher H (1997) Anomalous transport in random fracture networks. Phys Rev Lett 79(20):4038–4041

    CrossRef  Google Scholar 

  • Berkowitz B, Scher H (1998) Theory of anomalous chemical transport in random fracture networks. Phys Rev E 57(5):5858–5869

    CrossRef  Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44(2):1–49

    CrossRef  Google Scholar 

  • Bouwer H (1978) Groundwater hydrology. McGraw-Hill Book, New York

    Google Scholar 

  • Dafny E, Gvirtzman H, Burg A, Fleischer L (2003) The hydrogeology of the Golan basalt aquifer, Israel. Isr J Earth Sci 52:139–153

    CrossRef  Google Scholar 

  • Dafny E, Burg A, Gvirtzman H (2010) Effects of Karst and geological structure on groundwater flow: the case of Yarqon-Taninim aquifer, Israel. J Hydrol 389(3):260–275. https://doi.org/10.1016/j.jhydrol.2010.05.038

    CrossRef  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer Science and Business Media, Berlin

    Google Scholar 

  • Dagan G, Bear J (1968) Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations. J Hydraul Res 6(1):15–44

    CrossRef  Google Scholar 

  • Diersch H (2005) WASY Software FEFLOW (R)—finite element subsurface flow and transport simulation system: reference manual. WASY GmbH Inst. WASY GmbH, pp 1–292

    Google Scholar 

  • Diersch H (2013) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science and Business Media, Berlin

    Google Scholar 

  • Dvory NZ, Kuznetsov M, Livshitz Y, Gasser G, Pankratov I, Lev O, Yakirevich A (2018) Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator. Water Res 128:157–170

    CrossRef  Google Scholar 

  • Ezra S, Feinstein S, Yakirevich A, Adar E, Bilkis I (2006) Retardation of organo-bromides in a fractured chalk aquitard. J Contam Hydrol 86(3–4):195–214

    CrossRef  Google Scholar 

  • Falta RW, Pruess K, Finsterle S, Battistelli A (1995) T2VOC user’s guide. Lawrence Berkeley Laboratory, pp 1–168

    Google Scholar 

  • Ganot Y, Holtzman R, Weisbrod N, Nitzan I, Katz Y, Kurtzman D (2017) Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater. Hydrol Earth Syst Sci 21(9):4479–4493

    CrossRef  Google Scholar 

  • Ganot Y, Holtzman R, Weisbrod N, Russak A, Katz Y, Kurtzman D (2018) Geochemical processes during managed aquifer recharge with desalinated seawater. Water Resour Res 54(2):978–994

    CrossRef  Google Scholar 

  • Garven G (1989) A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada sedimentary basin. Am J Sci 289(2):105–166

    CrossRef  Google Scholar 

  • Garven G, Freeze RA (1984a) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1. Mathematical and numerical model. Am J Sci 284(10):1085–1124

    CrossRef  Google Scholar 

  • Garven G, Freeze RA (1984b) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 2. Quantitative results. Am J Sci 284(10):1125–1174

    CrossRef  Google Scholar 

  • Gordon E, Shamir U, Bensabat J (2000) Optimal management of a regional aquifer under salinization conditions. Water Resour Res 36(11):3193–3203

    CrossRef  Google Scholar 

  • Guttman J, Zukerman H (1995) Yarqon-Taninim-Be’er Sheva basin, setting and calibration of flow and salinity model. Rep. Mekorot Co., Israel (in Hebrew)

    Google Scholar 

  • Gvirtzman H, Garven G, Gvirtzman G (1997a) Hydrogeological modeling of the saline hot springs at the Sea of Galilee, Israel. Water Resour Res 33(5):913–926

    CrossRef  Google Scholar 

  • Gvirtzman H, Stanislavsky E (2000) Palaeohydrology of hydrocarbon maturation, migration and accumulation in the Dead Sea Rift. Basin Res 12(1):79–93

    CrossRef  Google Scholar 

  • Gvirtzman H, Garven G, Gvirtzman G (1997b) Thermal anomalies associated with forced and free ground-water convection in the Dead Sea rift valley. Geol Soc Am Bull 109(9):1167–1176

    CrossRef  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U. S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file report. U. S. Geological Survey, pp 1–134

    Google Scholar 

  • Hartmann A, Wagener T, Rimmer A, Lange J, Brielmann H, Weiler M (2013) Testing the realism of model structures to identify karst system processes using water quality and quantity signatures. Water Resour Res 49(6):3345–3358

    CrossRef  Google Scholar 

  • Hele-Shaw HS (1898) The flow of water. Nature 58:34–36. https://doi.org/10.1038/058034a0

    CrossRef  Google Scholar 

  • Hurwitz S, Stanislavsky E, Lyakhovsky V, Gvirtzman H (2000) Transient groundwater-lake interactions in a continental rift: Sea of Galilee, Israel. Geol Soc Am Bull 112(11):1694–1702

    CrossRef  Google Scholar 

  • Kafri U, Arad A (1979) Current subsurface intrusion of Mediterranean seawater—a possible source of groundwater salinity in the Rift Valley system, Israel. J Hydrol 44(3):267–287. https://doi.org/10.1016/0022-1694(79)90135-5

    CrossRef  Google Scholar 

  • Kafri U, Goldman M, Lyakhovsky V, Scholl C, Helwig S, Tezkan B (2007) The configuration of the fresh–saline groundwater interface within the regional Judea Group carbonate aquifer in northern Israel between the Mediterranean and the Dead Sea base levels as delineated by deep geoelectromagnetic soundings. J Hydrol 344(1–2):123–134

    CrossRef  Google Scholar 

  • Kessler A (2012) Integrating a cell model in the analysis of the salt flow to the Sea of Galilee. Paper presented at the Annual conference of the Israel Water Resources Association

    Google Scholar 

  • Kessler A, Kafri U (2007) Application of a cell model for operational management of the Na’aman groundwater basin, Israel. Isr J Earth Sci 56:29–46

    CrossRef  Google Scholar 

  • Kosakowski G, Berkowitz B, Scher H (2001) Analysis of field observations of tracer transport in a fractured till. J Contam Hydrol 47(1):29–51. https://doi.org/10.1016/S0169-7722(00)00140-6

    CrossRef  Google Scholar 

  • Kurtzman D, Scanlon BR (2011) Groundwater recharge through Vertisols: irrigated cropland vs. natural land, Israel. Vadose Zone J 10(2):662–674

    Google Scholar 

  • Kuznetsov M, Yakirevich A, Pachepsky YA, Sorek S, Weisbrod N (2012) Quasi 3D modeling of water flow in vadose zone and groundwater. J Hydrol 450–451:140–149. https://doi.org/10.1016/j.jhydrol.2012.05.025

    CrossRef  Google Scholar 

  • Levanon E, Yechieli Y, Shalev E, Friedman V, Gvirtzman H (2013) Reliable monitoring of the transition zone between fresh and saline waters in coastal aquifers. Groundwater Monit Rem 33(3):101–110

    CrossRef  Google Scholar 

  • Levanon E, Shalev E, Yechieli Y, Gvirtzman H (2016) Fluctuations of fresh-saline water interface and of water table induced by sea tides in unconfined aquifers. Adv Water Resour 96:34–42

    CrossRef  Google Scholar 

  • Levanon E, Yechieli Y, Gvirtzman H, Shalev E (2017) Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers—field measurements and numerical model. J Hydrol 551:665–675

    CrossRef  Google Scholar 

  • Levy M, Berkovitz B (2003) Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 64:203–226

    CrossRef  Google Scholar 

  • Levy Y, Shapira RH, Chefetz B, Kurtzman D (2017) Modeling nitrate from land surface to wells’ perforations under agricultural land: success, failure, and future scenarios in a Mediterranean case study. Hydrol Earth Syst Sci 21(7):3811

    CrossRef  Google Scholar 

  • Mandell AH, Zeitoun DG, Dagan G (2003) Salinity sources of Kefar Uria wells in the Judea group aquifer of Israel. Part 2—quantitative identification model. J Hydrol 270(1):39–48. https://doi.org/10.1016/S0022-1694(02)00217-2

  • Mercado A (1976) Nitrate and chloride pollution of aquifers: a regional study with the aid of a single-cell model. Water Resour Res 12(4):731–747

    CrossRef  Google Scholar 

  • Moreno Z, Paster A (2018) Prediction of pollutant remediation in a heterogeneous aquifer in Israel: reducing uncertainty by incorporating lithological, head and concentration data. J Hydrol 564:651–666. https://doi.org/10.1016/j.jhydrol.2018.07.012

    CrossRef  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    CrossRef  Google Scholar 

  • Paster A (2010) Mixing between fresh and salt waters at aquifer regional scale and identification of transverse dispersivity. J Hydrol 380(1–2):36–44

    CrossRef  Google Scholar 

  • Paster A, Dagan G (2007) Mixing at the interface between two fluids in porous media: a boundary-layer solution. J Fluid Mech 584:455–472

    CrossRef  Google Scholar 

  • Paster A, Dagan G (2008a) Mixing at the interface between fresh and salt waters in 3D steady flow with application to a pumping well in a coastal aquifer. Adv Water Resour 31(12):1565–1577. https://doi.org/10.1016/j.advwatres.2008.06.008

    CrossRef  Google Scholar 

  • Paster A, Dagan G (2008b) Mixing at the interface between two fluids in aquifer well upconing steady flow. Water Resour Res 44(5):1–11

    CrossRef  Google Scholar 

  • Paster A, Dagan G, Guttman J (2006) The salt-water body in the Northern part of Yarkon-Taninim aquifer: field data analysis, conceptual model and prediction. J Hydrol 323(1–4):154–167

    CrossRef  Google Scholar 

  • Peleg N, Gvirtzman H (2010) Groundwater flow modeling of two-levels perched karstic leaking aquifers as a tool for estimating recharge and hydraulic parameters. J Hydrol 388(1–2):13–27

    CrossRef  Google Scholar 

  • Peleg N, Morin E, Gvirtzman H, Enzel Y (2012) Rainfall, spring discharge and past human occupancy in the Eastern Mediterranean. Clim Change 112(3–4):769–789

    CrossRef  Google Scholar 

  • Prieto C, Destouni G, Schwartz J (2001) Seawater intrusion in coastal aquifers: effects of seasonal variations in extraction and recharge rates. Paper presented at the First international conference on saltwater intrusion and coastal aquifers—monitoring, modeling, and management, Essaouira, Morocco

    Google Scholar 

  • Rimmer A, Gal G (2003) Estimating the saline springs component in the solute and water balance of lake Kinneret, Israel. J Hydrol 284(1–4):228–243

    CrossRef  Google Scholar 

  • Rimmer A, Givati A (2014) Hydrology. In: Lake Kinneret—ecology and management. Aquatic ecology series, vol 6. Springer, Berlin, pp 97–111

    Google Scholar 

  • Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J Hydrol 331(3–4):524–542

    CrossRef  Google Scholar 

  • Rimmer A, Hurwitz S, Gvirtzman H (1999) Spatial and temporal characteristics of saline springs: Sea of Galilee, Israel. Ground Water 37(5):663–673

    CrossRef  Google Scholar 

  • Rimon Y, Dahan O, Nativ R, Geyer S (2007) Water percolation through the deep vadose zone and groundwater recharge: preliminary results based on a new vadose zone monitoring system. Water Resour Res 43(5):1–12

    CrossRef  Google Scholar 

  • Rona M, Gasser G, Negev I, Pankratov I, Elhanany S, Lev O, Gvirtzman H (2014) A 3-D hydrologic transport model of a water recharge system using carbamazepine and chloride as tracers. Water Resour Res 50(5):4220–4241

    CrossRef  Google Scholar 

  • Rona M, Lev O, Gvirtzman H (2018) Optimal remediation scheme for a wastewater recharge site: contaminants fate and transport model. Ground Water 56(6):871–880

    CrossRef  Google Scholar 

  • Rubin H (1983) On the application of the boundary layer approximation for the simulation of density stratified flows in aquifers. Adv Water Resour 6(2):96–105. https://doi.org/10.1016/0309-1708(83)90046-5

    CrossRef  Google Scholar 

  • Schmorak S, Mercado A (1969) Upconing of fresh water—sea water interface below pumping wells, field study. Water Resour Res 5(6):1290–1311

    CrossRef  Google Scholar 

  • Schwarz J (1976) Linear models for groundwater management. J Hydrol 28(2–4):377–392

    CrossRef  Google Scholar 

  • Schwarz J, Bear J, Dagan G (2016) Groundwater development in Israel. Ground Water 54(1):143–148

    CrossRef  Google Scholar 

  • Shalev E, Lazar A, Wollman S, Kington S, Yechieli Y, Gvirtzman H (2009) Biased monitoring of fresh water-salt water mixing zone in coastal aquifers. Ground Water 47(1):49–56

    CrossRef  Google Scholar 

  • Shavit U, Furman A (2001) The location of deep salinity sources in the Israeli coastal aquifer. J Hydrol 250(1–4):63–77

    CrossRef  Google Scholar 

  • Shechter M, Schwarz J (1970) Optimal planning of a coastal collector. Water Resour Res 6(4):1017–1024

    CrossRef  Google Scholar 

  • Sheffer N, Dafny E, Gvirtzman H, Navon S, Frumkin A, Morin E (2010) Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: model application and effects of temporal patterns. Water Resour Res 46:W05510. https://doi.org/10.1029/2008WR007607

    CrossRef  Google Scholar 

  • Šimůnek J, Suarez DL, Sejna M (1996) The UNSATCHEM software package for simulating the one-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 2.0. Report 141. US Salinity Laboratory, pp 1–197

    Google Scholar 

  • Šimůnek J, Van Genuchten MT, Sejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Res Rep 3, pp 1–240

    Google Scholar 

  • Šimůnek J, Van Genuchten MT, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25

    CrossRef  Google Scholar 

  • Sorek S, Borisov V, Yakirevich A (1999) Modified Eulerian Lagrangian method for density dependent miscible transport. In: Seawater intrusion in coastal aquifers—concepts, methods and practices. Springer, Berlin, pp 363–398

    Google Scholar 

  • Sorek S, Borisov V, Yakirevich A (2001) A two-dimensional areal model for density dependent flow regime. Transp Porous Media 43(1):87–105

    CrossRef  Google Scholar 

  • Stanislavsky E, Gvirtzman H (1999) Basin-scale migration of continental-rift brines: paleohydrologic modeling of the Dead Sea basin. Geology 27(9):791–794

    CrossRef  Google Scholar 

  • Sun NZ, Yeh WWG (1992) A stochastic inverse solution for transient groundwater flow: parameter identification and reliability analysis. Water Resour Res 28(12):3269–3280

    CrossRef  Google Scholar 

  • Tang D, Frind E, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour Res 17(3):555–564

    CrossRef  Google Scholar 

  • Turkeltaub T, Kurtzman D, Bel G, Dahan O (2015) Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. J Hydrol 522:618–627

    CrossRef  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44(5):892–898

    CrossRef  Google Scholar 

  • Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35(6):1877–1894

    CrossRef  Google Scholar 

  • Voss CI (1984) A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geological Survey, pp 1–407

    Google Scholar 

  • Weiss M, Gvirtzman H (2007) Estimating ground water recharge using flow models of perched karstic aquifers. Ground Water 45(6):761–773

    CrossRef  Google Scholar 

  • Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6(4):549–559

    CrossRef  Google Scholar 

  • Yechieli Y, Kafri U, Wollman S, Lyakhovsky V, Weinberger R (2007) On the relation between steep monoclinal flexure zones and steep hydraulic gradients. Ground Water 45(5):616–626

    CrossRef  Google Scholar 

  • Yechieli Y, Kafri U, Wollman S, Shalev E, Lyakhovsky V (2009) The effect of base level changes and geological structures on the location of the groundwater divide, as exhibited in the hydrological system between the Dead Sea and the Mediterranean Sea. J Hydrol 378:218–229

    CrossRef  Google Scholar 

  • Yechieli Y, Shalev E, Wollman S, Kiro Y, Kafri U (2010) Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations. Water Resour Res 46(12):1–11

    CrossRef  Google Scholar 

  • Zech A, Attinger S, Bellin A, Cvetkovic V, Dietrich P, Fiori A, Teutsch G and Dagan G (2019) A critical analysis of transverse dispersivity field data. Groundwater, 57: 632-639. https://doi.org/10.1111/gwat.12838

  • Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. United States Army Corps of Engineers, pp 1–219

    Google Scholar 

  • Zhou Q (1999) Modeling seawater intrusion in coastal aquifers. PhD thesis, Technion-Israel Institute of Technology

    Google Scholar 

  • Zhou Q, Bear J, Bensabat J (2005) Saltwater upconing and decay beneath a well pumping above an interface zone. Transp Porous Media 61(3):337–363

    CrossRef  Google Scholar 

  • Zukerman H, Shachnai E (1999) Yarkon-Taninim-Beer Sheva basin, flow model update. TAHAL Rep 6759-00.133

    Google Scholar 

Download references

Acknowledgements

We are grateful to the editors, Yossi Yechieli and Uri Kafri, for their constructive comments on the chapter, which helped improve it considerably. We are also grateful to the many authors who shared their contributions with us. Specifically, we would like to thank Alex Yakirevich, Alex Furman, Gedeon Dagan, Hila Abbo, Haim Gvirtzman, Brian Berkovitz, and the late Alon Rimmer, who sent us his works just few weeks before he passed away.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Paster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Paster, A., Matan, N. (2021). Numerical Modeling of Groundwater in Israel. In: Kafri, U., Yechieli, Y. (eds) The Many Facets of Israel's Hydrogeology. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-51148-7_17

Download citation