Skip to main content

A Multi-omics Data Resource for Frontotemporal Dementia Research

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

Frontotemporal dementia (FTD) is a neurodegenerative disease with high heritability. Almost half of all familial cases are caused by mutations in one of the three genes MAPT, GRN and C9orf72. Even though major advances in FTD research have been achieved during the last decades, it is not yet fully understood how mutations in these diverse genes lead to the disease. To improve our understanding of FTD, the Risk and Modifying Factors in Frontotemporal Dementia (RiMod-FTD) consortium has created an FTD-specific multi-omics data resource. Using multiple omics technologies on post-mortem brain tissue from patients with mutations in GRN, MAPT or C9orf72 and healthy controls, the resource aims to provide a comprehensive cellular profile of FTD. Furthermore, brain tissue from multiple mouse models and induced pluripotent stem cells (iPSC)-derived neuronal cultures were profiled with similar multi-omics technologies to make up for the shortcomings of post-mortem brain tissue. All data are publicly available to all researchers, and ongoing efforts aim to increase the available datasets and to improve their accessibility. The RiMod-FTD resource represents a uniquely valuable dataset for the field of FTD research, which we hope will accelerate the scientific progress in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rohrer JD, Guerreiro R, Vandrovcova J et al (2009) The heritability and genetics of frontotemporal lobar degeneration. Neurology 73(18):1451–1456

    Google Scholar 

  2. Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386(10004):1672–1682

    Article  Google Scholar 

  3. Davis CA, Hitz BC, Sloan CA et al (2018) The Encyclopedia of DNA elements (ENCODE): Data portal update. Nucleic Acids Res 46(D1):D794–D801

    Google Scholar 

  4. Dunham I, Kundaje A, Aldred SF et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Google Scholar 

  5. Lizio M, Harshbarger J, Shimoji H et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16(1):22

    Google Scholar 

  6. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet

    Google Scholar 

  7. Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100(26):15776–15781

    Google Scholar 

  8. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461

    Google Scholar 

  9. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. Nature Publishing Group 20:590–607

    Google Scholar 

  10. Argelaguet R, Velten B, Arnol D et al (2018) Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Sys Biol 14(6):e8124

    Google Scholar 

  11. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  Google Scholar 

  12. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1):139–140

    Google Scholar 

  13. Dickson DW, Baker MC, Jackson JL et al (2019) Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathol Commun 7(1):150

    Google Scholar 

  14. Wang X, Park J, Susztak K et al (2019) Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun 10:1):1–1):9

    Google Scholar 

  15. Menden K, Marouf M, Dalmia A et al (2019) Deep-learning-based cell composition analysis from tissue expression profiles. bioRxiv 659227

    Google Scholar 

  16. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:1

    Article  Google Scholar 

  17. Swarup V, Hinz FI, Rexach JE et al (2019) Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat Med 25(1):152–164

    Google Scholar 

  18. Rademakers R, Cruts M, Van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24:277–295

    Article  CAS  Google Scholar 

  19. Li YI, Knowles DA, Humphrey J et al (2018) Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet 50(1):151–158

    Google Scholar 

  20. Vaquero-Garcia J, Barrera A, Gazzara MR et al (2016) A new view of transcriptome complexity and regulation through the lens of local splicing variations. elife 5(February):e11752

    Google Scholar 

  21. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. Elsevier B.V 33:95–130

    Google Scholar 

  22. Arnold ES, Ling SC, Huelga SC et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110(8):E736–E745

    Google Scholar 

  23. Sun S, Ling SC, Qiu J et al (2015) ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 6:6171

    Google Scholar 

  24. Samaranch L, Lorenzo-Betancor O, Arbelo JM et al (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133(4):1128–1142

    Google Scholar 

  25. Arenillas DJ, Forrest ARR, Kawaji H et al (2016) CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs. Bioinformatics 32(18):2858–2860

    Google Scholar 

  26. Keenan AB, Torre D, Lachmann A et al (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 47(W1):W212–W224

    Google Scholar 

  27. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science (80- ) 316(5830):1497–1502

    Google Scholar 

  28. Gaspar JM 2018 Improved peak-calling with MACS2. bioRxiv 496521

    Google Scholar 

  29. Ding C, Chan DW, Liu W et al (2013) Proteome-wide profiling of activated transcription factors with a concatenated tandem array of transcription factor response elements. Proc Natl Acad Sci USA 110(17):6771–6776

    Google Scholar 

  30. Hausser J, Zavolan M (2014) Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nat Rev Genet 15(9):599–612

    Article  CAS  Google Scholar 

  31. Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3(11):881–886

    Article  CAS  Google Scholar 

  32. Borgmästars E, de Weerd HA, Lubovac-Pilav Z et al (2019) miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer. BMC Bioinformatics 20(1):393

    Google Scholar 

  33. Jin Z, Liu Y (2018) DNA methylation in human diseases. Genes Dis. Chongqing yi ke da xue, di 2 lin chuang xue yuan Bing du xing gan yan yan jiu suo 5:1–8

    Article  CAS  Google Scholar 

  34. Xi Z, Zhang M, Bruni AC et al (2015) The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 129(5):715–727

    Google Scholar 

  35. Gijselinck I, Van Mossevelde S, Van Der Zee J et al (2016) The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatry 21(8):1112–1124

    Google Scholar 

  36. Schwanhüusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Google Scholar 

  37. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell. Cell Press 165:535–550

    Google Scholar 

  38. Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Google Scholar 

  39. Trancikova A, Ramonet D, Moore DJ (2011) Genetic mouse models of neurodegenerative diseases. In: Progress in molecular biology and translational science. Elsevier B.V, Amsterdam, pp 419–482

    Google Scholar 

  40. Seok J, Shaw Warren H, Alex GC et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512

    Google Scholar 

  41. Normand R, Du W, Briller M et al (2018) Found in translation: a machine learning model for mouse-to-human inference. Nat Methods 15(12):1067–1073

    Google Scholar 

  42. McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol. Academic Press 431:1805–1817

    Google Scholar 

  43. Penney J, Ralveniu, WT, Tsai, L (2020) Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry 25:148–167

    Google Scholar 

  44. Zhang Y, Schmid B, Nikolaisen NK et al (2017) Patient iPSC-derived neurons for disease modeling of frontotemporal dementia with mutation in CHMP2B. Stem Cell Rep 8(3):648–658

    Google Scholar 

  45. Jiang S, Wen N, Li Z et al. (2018) Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry 8:265

    Google Scholar 

  46. Ferrari R, Grassi M, Salvi E et al (2015) A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiol Aging 36(10):2904.e13–2904.e26

    Google Scholar 

  47. Ferrari R, Hernandez DG, Nalls MA et al (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13(7):686–699

    Google Scholar 

  48. Shaun Purcell. PLINK. 2017

    Google Scholar 

  49. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Google Scholar 

  50. van der Lee SJ, Conway OJ, Jansen I et al (2019) A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol 138(2):237–250

    Google Scholar 

  51. Martens LH, Zhang J, Barmada SJ et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959

    Google Scholar 

  52. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93

    Google Scholar 

  53. Pottier C, Ren Y, Perkerson RB et al (2019) Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 137(6):879–899

    Google Scholar 

  54. Gijselinck I, Van Mossevelde S, Van Der Zee J et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125

    Article  CAS  Google Scholar 

  55. Lappalainen I, Almeida-King J, Kumanduri V et al (2015) The European genome-phenome archive of human data consented for biomedical research. Nat Genet. Nature Publishing Group 47:692–695

    Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by RiMod-FTD an EU Joint Programme – Neurodegenerative Disease Research (JPND) to PH, KM; BMBF Integrative Data Semantics for Neurodegenerative research (IDSN) to PH and the DZNE and NOMIS Foundation to PH, KM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heutink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heutink, P., Menden, K., Dalmia, A. (2021). A Multi-omics Data Resource for Frontotemporal Dementia Research. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_16

Download citation

Publish with us

Policies and ethics