Skip to main content

Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27(1):48–57

    Article  PubMed  Google Scholar 

  2. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9):2456–2477

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L et al (2020) Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol 19(2):145–156

    Article  CAS  PubMed  Google Scholar 

  5. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58(11):1615–1621

    Article  CAS  PubMed  Google Scholar 

  6. Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning I, Pijnenburg Y et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126(Pt 9):2016–2022

    Article  PubMed  Google Scholar 

  7. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J et al (2005) Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65(11):1817–1819

    Article  CAS  PubMed  Google Scholar 

  8. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705

    Article  CAS  PubMed  Google Scholar 

  9. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43(6):815–825

    Article  CAS  PubMed  Google Scholar 

  10. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95(13):7737–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den Broeck M et al (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatry 7(10):1064–1074

    Article  CAS  PubMed  Google Scholar 

  12. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924

    Article  CAS  PubMed  Google Scholar 

  13. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919

    Article  CAS  PubMed  Google Scholar 

  14. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  15. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611

    Article  CAS  PubMed  Google Scholar 

  16. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bateman A, Bennett HP (1998) Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158(2):145–151

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM et al (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111(6):867–878

    Article  CAS  PubMed  Google Scholar 

  19. Kessenbrock K, Frohlich L, Sixt M, Lammermann T, Pfister H, Bateman A et al (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118(7):2438–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Suh HS, Choi N, Tarassishin L, Lee SC (2012) Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS One 7(4):e35115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butler GS, Dean RA, Tam EM, Overall CM (2008) Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol Cell Biol 28(15):4896–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bai XH, Wang DW, Kong L, Zhang Y, Luan Y, Kobayashi T et al (2009) ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol Cell Biol 29(15):4201–4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daniel R, He Z, Carmichael KP, Halper J, Bateman A (2000) Cellular localization of gene expression for progranulin. J Histochem Cytochem 48(7):999–1009

    Article  CAS  PubMed  Google Scholar 

  24. Daniel R, Daniels E, He Z, Bateman A (2003) Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn 227(4):593–599

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL et al (2017) Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 8:15277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31(11):1245–1254

    Article  CAS  PubMed  Google Scholar 

  28. Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J et al (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181(1):37–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Paushter DH, Du H, Feng T, Hu F (2018) The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 136(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8(8):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clot F, Rovelet-Lecrux A, Lamari F, Noel S, Keren B, Camuzat A et al (2014) Partial deletions of the GRN gene are a cause of frontotemporal lobar degeneration. Neurogenetics 15(2):95–100

    CAS  PubMed  Google Scholar 

  32. Rovelet-Lecrux A, Deramecourt V, Legallic S, Maurage CA, Le Ber I, Brice A et al (2008) Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiol Dis 31(1):41–45

    Article  CAS  PubMed  Google Scholar 

  33. Gijselinck I, van der Zee J, Engelborghs S, Goossens D, Peeters K, Mattheijssens M et al (2008) Progranulin locus deletion in frontotemporal dementia. Hum Mutat 29(1):53–58

    Article  CAS  PubMed  Google Scholar 

  34. Pinarbasi ES, Karamyshev AL, Tikhonova EB, Wu IH, Hudson H, Thomas PJ (2018) Pathogenic signal sequence mutations in progranulin disrupt SRP interactions required for mRNA stability. Cell Rep 23(10):2844–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B et al (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem 283(3):1744–1753

    Article  CAS  PubMed  Google Scholar 

  36. Saracino D, Sellami L, Clot F, Camuzat A, Lamari F, Rucheton B et al (2020) The missense p.Trp7Arg mutation in GRN gene leads to progranulin haploinsufficiency. Neurobiol Aging 85:154 e9–154e11

    Article  CAS  Google Scholar 

  37. Pottier C, Zhou X, Perkerson RB 3rd, Baker M, Jenkins GD, Serie DJ et al (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17(6):548–558

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benussi L, Rademakers R, Rutherford NJ, Wojtas A, Glionna M, Paterlini A et al (2013) Estimating the age of the most common Italian GRN mutation: walking back to Canossa times. J Alzheimers Dis 33(1):69–76

    Article  PubMed  Google Scholar 

  39. Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71(16):1235–1239

    Article  CAS  PubMed  Google Scholar 

  40. Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R et al (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132(Pt 3):583–591

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sleegers K, Brouwers N, Van Damme P, Engelborghs S, Gijselinck I, van der Zee J et al (2009) Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 65(5):603–609

    Article  CAS  PubMed  Google Scholar 

  42. Galimberti D, Fumagalli GG, Fenoglio C, Cioffi SMG, Arighi A, Serpente M et al (2018) Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol Aging 62:245 e9–245e12

    Article  CAS  Google Scholar 

  43. Karch CM, Ezerskiy L, Redaelli V, Giovagnoli AR, Tiraboschi P, Pelliccioni G et al (2016) Missense mutations in progranulin gene associated with frontotemporal lobar degeneration: study of pathogenetic features. Neurobiol Aging 38:215 e1–215e12

    Article  CAS  Google Scholar 

  44. Wang J, Van Damme P, Cruchaga C, Gitcho MA, Vidal JM, Seijo-Martinez M et al (2010) Pathogenic cysteine mutations affect progranulin function and production of mature granulins. J Neurochem 112(5):1305–1315

    Article  CAS  PubMed  Google Scholar 

  45. Kleinberger G, Capell A, Brouwers N, Fellerer K, Sleegers K, Cruts M et al (2016) Reduced secretion and altered proteolytic processing caused by missense mutations in progranulin. Neurobiol Aging 39:220 e17–220 e26

    Article  CAS  Google Scholar 

  46. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17(23):3631–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pottier C, Ren Y, Perkerson RB 3rd, Baker M, Jenkins GD, van Blitterswijk M et al (2019) Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 137(6):879–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hokkanen SRK, Kero M, Kaivola K, Hunter S, Keage HAD, Kiviharju A et al (2019) Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts. Brain Pathol 30(2):364–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nho K, Saykin AJ, Alzheimer’s Disease Neuroimaging I, Nelson PT (2016) Hippocampal sclerosis of aging, a common Alzheimer’s disease ‘mimic’: risk genotypes are associated with brain atrophy outside the temporal lobe. J Alzheimers Dis 52(1):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng J, Su L, Xu Z, Chen G (2014) Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer’s disease. Gene 542(2):141–145

    Article  CAS  PubMed  Google Scholar 

  51. Xu HM, Tan L, Wan Y, Tan MS, Zhang W, Zheng ZJ et al (2017) PGRN is associated with late-onset Alzheimer’s disease: a case-control replication study and meta-analysis. Mol Neurobiol 54(2):1187–1195

    Article  CAS  PubMed  Google Scholar 

  52. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90(6):1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mole SE, Anderson G, Band HA, Berkovic SF, Cooper JD, Kleine Holthaus SM et al (2019) Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol 18(1):107–116

    Article  PubMed  Google Scholar 

  54. Huin V, Barbier M, Bottani A, Lobrinus JA, Clot F, Lamari F et al (2020) Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain 143(1):303–319

    Article  PubMed  Google Scholar 

  55. Rademakers R, Baker M, Gass J, Adamson J, Huey ED, Momeni P et al (2007) Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C-->T (Arg493X) mutation: an international initiative. Lancet Neurol 6(10):857–868

    Article  CAS  PubMed  Google Scholar 

  56. Toh H, Chitramuthu BP, Bennett HP, Bateman A (2011) Structure, function, and mechanism of progranulin; the brain and beyond. J Mol Neurosci 45(3):538–548

    Article  CAS  PubMed  Google Scholar 

  57. Chitramuthu BP, Bennett HPJ, Bateman A (2017) Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 140(12):3081–3104

    Article  PubMed  Google Scholar 

  58. He Z, Bateman A (1999) Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res 59(13):3222–3229

    CAS  PubMed  Google Scholar 

  59. Lu R, Serrero G (2001) Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/granulin precursor). Proc Natl Acad Sci U S A 98(1):142–147

    Article  CAS  PubMed  Google Scholar 

  60. He Z, Ismail A, Kriazhev L, Sadvakassova G, Bateman A (2002) Progranulin (PC-cell-derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res 62(19):5590–5596

    CAS  PubMed  Google Scholar 

  61. Tangkeangsirisin W, Hayashi J, Serrero G (2004) PC cell-derived growth factor mediates tamoxifen resistance and promotes tumor growth of human breast cancer cells. Cancer Res 64(5):1737–1743

    Article  CAS  PubMed  Google Scholar 

  62. Kim WE, Serrero G (2006) PC cell-derived growth factor stimulates proliferation and confers Trastuzumab resistance to Her-2-overexpressing breast cancer cells. Clin Cancer Res 12(14 Pt 1):4192–4199

    Article  CAS  PubMed  Google Scholar 

  63. Pizarro GO, Zhou XC, Koch A, Gharib M, Raval S, Bible K et al (2007) Prosurvival function of the granulin-epithelin precursor is important in tumor progression and chemoresponse. Int J Cancer 120(11):2339–2343

    Article  CAS  PubMed  Google Scholar 

  64. Zhang H, Serrero G (1998) Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci U S A 95(24):14202–14207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu R, Serrero G (2000) Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci U S A 97(8):3993–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen XY, Li JS, Liang QP, He DZ, Zhao J (2008) Expression of PC cell-derived growth factor and vascular endothelial growth factor in esophageal squamous cell carcinoma and their clinicopathologic significance. Chin Med J 121(10):881–886

    Article  CAS  PubMed  Google Scholar 

  67. Cheung ST, Wong SY, Leung KL, Chen X, So S, Ng IO et al (2004) Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin Cancer Res 10(22):7629–7636

    Article  CAS  PubMed  Google Scholar 

  68. Kleinberger G, Wils H, Ponsaerts P, Joris G, Timmermans JP, Van Broeckhoven C et al (2010) Increased caspase activation and decreased TDP-43 solubility in progranulin knockout cortical cultures. J Neurochem 115(3):735–747

    Article  CAS  PubMed  Google Scholar 

  69. Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K et al (2012) Progranulin regulates neuronal outgrowth independent of sortilin. Mol Neurodegener 7:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M et al (2009) Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci 10:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD et al (2011) Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron 71(6):1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T et al (2010) Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207(1):117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao X, Joselin AP, Wang L, Kar A, Ray P, Bateman A et al (2010) Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3beta. Protein Cell 1(6):552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chitramuthu BP, Baranowski DC, Kay DG, Bateman A, Bennett HP (2010) Progranulin modulates zebrafish motoneuron development in vivo and rescues truncation defects associated with knockdown of survival motor neuron 1. Mol Neurodegener 5:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Laird AS, Van Hoecke A, De Muynck L, Timmers M, Van den Bosch L, Van Damme P et al (2010) Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLoS One 5(10):e13368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chitramuthu BP, Kay DG, Bateman A, Bennett HP (2017) Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS. PLoS One 12(3):e0174784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shoyab M, McDonald VL, Byles C, Todaro GJ, Plowman GD (1990) Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A 87(20):7912–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Plowman GD, Green JM, Neubauer MG, Buckley SD, McDonald VL, Todaro GJ et al (1992) The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267(18):13073–13078

    Article  CAS  PubMed  Google Scholar 

  79. Culouscou JM, Carlton GW, Shoyab M (1993) Biochemical analysis of the epithelin receptor. J Biol Chem 268(14):10458–10462

    Article  CAS  PubMed  Google Scholar 

  80. Liau LM, Lallone RL, Seitz RS, Buznikov A, Gregg JP, Kornblum HI et al (2000) Identification of a human glioma-associated growth factor gene, granulin, using differential immuno-absorption. Cancer Res 60(5):1353–1360

    CAS  PubMed  Google Scholar 

  81. De Muynck L, Herdewyn S, Beel S, Scheveneels W, Van Den Bosch L, Robberecht W et al (2013) The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiol Aging 34(11):2541–2547

    Article  PubMed  CAS  Google Scholar 

  82. Wang P, Chitramuthu B, Bateman A, Bennett HPJ, Xu P, Ni F (2018) Structure dissection of zebrafish progranulins identifies a well-folded granulin/epithelin module protein with pro-cell survival activities. Protein Sci 27(8):1476–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng JQ, Guo FJ, Jiang BC, Zhang Y, Frenkel S, Wang DW et al (2010) Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J 24(6):1879–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zanocco-Marani T, Bateman A, Romano G, Valentinis B, He ZH, Baserga R (1999) Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res 59(20):5331–5340

    CAS  PubMed  Google Scholar 

  85. Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV et al (2006) Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 66(14):7103–7110

    Article  CAS  PubMed  Google Scholar 

  86. Ong CH, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18(4):1275–1288

    CAS  PubMed  Google Scholar 

  87. Xu J, Xilouri M, Bruban J, Shioi J, Shao Z, Papazoglou I et al (2011) Extracellular progranulin protects cortical neurons from toxic insults by activating survival signaling. Neurobiol Aging 32(12):2326 e5–2326 16

    Article  CAS  Google Scholar 

  88. Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS et al (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10(11):1449–1457

    Article  CAS  PubMed  Google Scholar 

  89. Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR et al (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68(4):654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35(4):261–270

    Article  CAS  PubMed  Google Scholar 

  91. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848

    Article  CAS  PubMed  Google Scholar 

  92. Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L et al (2016) EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215(5):687–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Altmann C, Vasic V, Hardt S, Heidler J, Haussler A, Wittig I et al (2016) Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling. Mol Neurodegener 11(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394

    Article  CAS  PubMed  Google Scholar 

  95. Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J et al (2019) A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366(6472):eaax9198

    Article  CAS  PubMed  Google Scholar 

  96. Bateman A, Belcourt D, Bennett H, Lazure C, Solomon S (1990) Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun 173(3):1161–1168

    Article  CAS  PubMed  Google Scholar 

  97. Gong Y, Zhan T, Li Q, Zhang G, Tan B, Yang X et al (2016) Serum progranulin levels are elevated in patients with chronic hepatitis B virus infection, reflecting viral load. Cytokine 85:26–29

    Article  CAS  PubMed  Google Scholar 

  98. Wei F, Jiang Z, Sun H, Pu J, Sun Y, Wang M et al (2019) Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling. PLoS Pathog 15(10):e1008062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zou S, Luo Q, Song Z, Zhang L, Xia Y, Xu H et al (2017) Contribution of progranulin to protective lung immunity during bacterial pneumonia. J Infect Dis 215(11):1764–1773

    Article  CAS  PubMed  Google Scholar 

  100. Suh HS, Gelman BB, Lee SC (2014) Potential roles of microglial cell progranulin in HIV-associated CNS pathologies and neurocognitive impairment. J Neuroimmune Pharmacol 9(2):117–132

    Article  PubMed  PubMed Central  Google Scholar 

  101. Suh HS, Lo Y, Choi N, Letendre S, Lee SC (2014) Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS One 9(5):e98184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Alissa EM, Sutaih RH, Kamfar HZ, Alagha AE, Marzouki ZM (2017) Serum progranulin levels in relation to insulin resistance in childhood obesity. J Pediatr Endocrinol Metab 30(12):1251–1256

    Article  CAS  PubMed  Google Scholar 

  103. Abella V, Pino J, Scotece M, Conde J, Lago F, Gonzalez-Gay MA et al (2017) Progranulin as a biomarker and potential therapeutic agent. Drug Discov Today 22(10):1557–1564

    Article  CAS  PubMed  Google Scholar 

  104. Korolczuk A, Beltowski J (2017) Progranulin, a new adipokine at the crossroads of metabolic syndrome, diabetes, dyslipidemia and hypertension. Curr Pharm Des 23(10):1533–1539

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka Y, Takahashi T, Tamori Y (2014) Circulating progranulin level is associated with visceral fat and elevated liver enzymes: significance of serum progranulin as a useful marker for liver dysfunction. Endocr J 61(12):1191–1196

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto Y, Takemura M, Serrero G, Hayashi J, Yue B, Tsuboi A et al (2014) Increased serum GP88 (Progranulin) concentrations in rheumatoid arthritis. Inflammation 37(5):1806–1813

    Article  CAS  PubMed  Google Scholar 

  107. Cerezo LA, Kuklova M, Hulejova H, Vernerova Z, Kasprikova N, Veigl D et al (2015) Progranulin is associated with disease activity in patients with rheumatoid arthritis. Mediat Inflamm 2015:740357

    Google Scholar 

  108. Bhandari V, Daniel R, Lim PS, Bateman A (1996) Structural and functional analysis of a promoter of the human granulin/epithelin gene. Biochem J 319(Pt 2):441–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A et al (2002) IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem 277(47):45129–45140

    Article  CAS  PubMed  Google Scholar 

  110. He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9(2):225–229

    Article  CAS  PubMed  Google Scholar 

  111. Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129(Pt 11):3081–3090

    Article  PubMed  Google Scholar 

  112. Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mukherjee O, Pastor P, Cairns NJ, Chakraverty S, Kauwe JS, Shears S et al (2006) HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 60(3):314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J (2010) Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol 119(1):123–133

    Article  CAS  PubMed  Google Scholar 

  115. Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M (2013) Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience 231:49–60

    Article  CAS  PubMed  Google Scholar 

  116. Petkau TL, Neal SJ, Orban PC, MacDonald JL, Hill AM, Lu G et al (2010) Progranulin expression in the developing and adult murine brain. J Comp Neurol 518(19):3931–3947

    Article  PubMed  Google Scholar 

  117. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M (2017) Progranulin protects hippocampal neurogenesis via suppression of neuroinflammatory responses under acute immune stress. Mol Neurobiol 54(5):3717–3728

    Article  CAS  PubMed  Google Scholar 

  118. Mao Q, Wang D, Li Y, Kohler M, Wilson J, Parton Z et al (2017) Disease and region specificity of granulin immunopositivities in Alzheimer disease and frontotemporal lobar degeneration. J Neuropathol Exp Neurol 76(11):957–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mao Q, Zheng X, Gefen T, Rogalski E, Spencer CL, Rademakers R et al (2019) FTLD-TDP with and without GRN mutations cause different patterns of CA1 pathology. J Neuropathol Exp Neurol 78(9):844–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Holler CJ, Taylor G, Deng Q, Kukar T (2017) Intracellular proteolysis of progranulin generates stable, lysosomal granulins that are haploinsufficient in patients with frontotemporal dementia caused by GRN mutations. eNeuro 4(4):ENEURO.0100-17

    Google Scholar 

  121. Malaspina A, Kaushik N, de Belleroche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77(1):132–145

    Article  CAS  PubMed  Google Scholar 

  122. Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100(4):1902–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R et al (2014) Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20(10):1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J et al (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112(28):E3699–E3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, Van Broeck B et al (2009) Progranulin expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse models. J Pathol 219(2):173–181

    Article  CAS  PubMed  Google Scholar 

  126. Suarez-Calvet M, Capell A, Araque Caballero MA, Morenas-Rodriguez E, Fellerer K, Franzmeier N et al (2018) CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 10(12):e9712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Mendsaikhan A, Tooyama I, Bellier JP, Serrano GE, Sue LI, Lue LF et al (2019) Characterization of lysosomal proteins progranulin and prosaposin and their interactions in Alzheimer’s disease and aged brains: increased levels correlate with neuropathology. Acta Neuropathol Commun 7(1):215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kleinberger G, Capell A, Haass C, Van Broeckhoven C (2013) Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol 47(1):337–360

    Article  CAS  PubMed  Google Scholar 

  129. Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K et al (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185(2):110–118

    Article  CAS  PubMed  Google Scholar 

  130. Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P et al (2012) Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 45(2):711–722

    Article  CAS  PubMed  Google Scholar 

  131. Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A, Bagley JA et al (2011) A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A 108(11):4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D et al (2012) Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol 228(1):67–76

    CAS  PubMed  Google Scholar 

  133. Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM et al (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 115(12):E2849–E2E58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J et al (2010) Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol 177(1):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ (2012) Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 45(1):395–408

    Article  CAS  PubMed  Google Scholar 

  136. Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT et al (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24(12):4639–4647

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165(4):921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Krabbe G, Minami SS, Etchegaray JI, Taneja P, Djukic B, Davalos D et al (2017) Microglial NFkappaB-TNFalpha hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc Natl Acad Sci U S A 114(19):5029–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gotzl JK, Brendel M, Werner G, Parhizkar S, Sebastian Monasor L, Kleinberger G et al (2019) Opposite microglial activation stages upon loss of PGRN or TREM2 result in reduced cerebral glucose metabolism. EMBO Mol Med 11(6):e9711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kojima Y, Ono K, Inoue K, Takagi Y, Kikuta K, Nishimura M et al (2009) Progranulin expression in advanced human atherosclerotic plaque. Atherosclerosis 206(1):102–108

    Article  CAS  PubMed  Google Scholar 

  142. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY et al (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332(6028):478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH et al (2013) Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci 33(21):9202–9213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Etemadi N, Webb A, Bankovacki A, Silke J, Nachbur U (2013) Progranulin does not inhibit TNF and lymphotoxin-alpha signalling through TNF receptor 1. Immunol Cell Biol 91(10):661–664

    Article  CAS  PubMed  Google Scholar 

  145. Hu Y, Xiao H, Shi T, Oppenheim JJ, Chen X (2014) Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4(+) Foxp3(+) regulatory T cells. Immunology 142(2):193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stubert J, Waldmann K, Dieterich M, Richter DU, Briese V (2014) Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-alpha-induced apoptosis. Arch Gynecol Obstet 290(5):867–873

    Article  CAS  PubMed  Google Scholar 

  147. Fujita K, Chen X, Homma H, Tagawa K, Amano M, Saito A et al (2018) Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nat Commun 9(1):433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Lang I, Fullsack S, Wajant H (2018) Lack of evidence for a direct interaction of progranulin and tumor necrosis factor receptor-1 and tumor necrosis factor receptor-2 from cellular binding studies. Front Immunol 9:793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Baladron V, Ruiz-Hidalgo MJ, Bonvini E, Gubina E, Notario V, Laborda J (2002) The EGF-like homeotic protein dlk affects cell growth and interacts with growth-modulating molecules in the yeast two-hybrid system. Biochem Biophys Res Commun 291(2):193–204

    Article  CAS  PubMed  Google Scholar 

  150. Park B, Buti L, Lee S, Matsuwaki T, Spooner E, Brinkmann MM et al (2011) Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity 34(4):505–513

    Article  PubMed  CAS  Google Scholar 

  151. Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB et al (2015) Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol 210(6):991–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Almeida MR, Macario MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I (2016) Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging 41:200 e1–200 e5

    Article  CAS  Google Scholar 

  153. Kamate M, Detroja M, Hattiholi V (2019) Neuronal ceroid lipofuscinosis type-11 in an adolescent. Brain and Development 41(6):542–545

    Article  PubMed  Google Scholar 

  154. Hyung S, Im SK, Lee BY, Shin J, Park JC, Lee C et al (2019) Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia 67(2):360–375

    Article  PubMed  Google Scholar 

  155. Tanaka M, Kuse Y, Nakamura S, Hara H, Shimazawa M (2019) Potential effects of progranulin and granulins against retinal photoreceptor cell degeneration. Mol Vis 25:902–911

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee CW, Stankowski JN, Chew J, Cook CN, Lam YW, Almeida S et al (2017) The lysosomal protein cathepsin L is a progranulin protease. Mol Neurodegener 12(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Zhou X, Paushter DH, Feng T, Sun L, Reinheckel T, Hu F (2017) Lysosomal processing of progranulin. Mol Neurodegener 12(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S et al (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 39(20):8677–8688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G et al (2013) Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci 33(12):5352–5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhou X, Sun L, Brady OA, Murphy KA, Hu F (2017) Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency. Acta Neuropathol Commun 5(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP et al (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214(9):2611–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gotzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G et al (2014) Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127(6):845–860

    PubMed  Google Scholar 

  164. Gotzl JK, Colombo AV, Fellerer K, Reifschneider A, Werner G, Tahirovic S et al (2018) Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener 13(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Tyynela J, Palmer DN, Baumann M, Haltia M (1993) Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett 330(1):8–12

    Article  CAS  PubMed  Google Scholar 

  166. Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol 93(4):379–390

    Article  CAS  PubMed  Google Scholar 

  167. Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A et al (2017) Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med 9(385):eaah5642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26(24):4861–4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zheng Y, Brady OA, Meng PS, Mao Y, Hu F (2011) C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking. PLoS One 6(6):e21023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Willnow TE, Petersen CM, Nykjaer A (2008) VPS10P-domain receptors – regulators of neuronal viability and function. Nat Rev Neurosci 9(12):899–909

    Article  CAS  PubMed  Google Scholar 

  171. Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D et al (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20(9):2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM et al (2014) Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 23(6):1467–1478

    Article  CAS  PubMed  Google Scholar 

  173. Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ et al (2010) Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet 87(6):890–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schulze H, Sandhoff K (2014) Sphingolipids and lysosomal pathologies. Biochim Biophys Acta 1841(5):799–810

    Article  CAS  PubMed  Google Scholar 

  175. Zhou X, Sullivan PM, Sun L, Hu F (2017) The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C. J Neurochem 143(2):236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nicholson AM, Finch NA, Almeida M, Perkerson RB, van Blitterswijk M, Wojtas A et al (2016) Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun 7:11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kishimoto Y, Hiraiwa M, O’Brien JS (1992) Saposins: structure, function, distribution, and molecular genetics. J Lipid Res 33(9):1255–1267

    Article  CAS  PubMed  Google Scholar 

  178. Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G (2012) Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem 287(39):32298–32306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Haimovich B, Tanaka JC (1995) Magainin-induced cytotoxicity in eukaryotic cells: kinetics, dose-response and channel characteristics. Biochim Biophys Acta 1240(2):149–158

    Article  PubMed  Google Scholar 

  180. Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L et al (2017) Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet 26(15):2850–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhou X, Paushter DH, Feng T, Pardon CM, Mendoza CS, Hu F (2017) Regulation of cathepsin D activity by the FTLD protein progranulin. Acta Neuropathol 134(1):151–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Butler VJ, Cortopassi WA, Argouarch AR, Ivry SL, Craik CS, Jacobson MP et al (2019) Progranulin stimulates the in vitro maturation of pro-Cathepsin D at acidic pH. J Mol Biol 431(5):1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jian J, Zhao S, Tian QY, Liu H, Zhao Y, Chen WC et al (2016) Association between progranulin and Gaucher disease. EBioMedicine 11:127–137

    Article  PubMed  PubMed Central  Google Scholar 

  184. Jian J, Tian QY, Hettinghouse A, Zhao S, Liu H, Wei J et al (2016) Progranulin recruits HSP70 to beta-Glucocerebrosidase and is therapeutic against Gaucher disease. EBioMedicine 13:212–224

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zhou X, Paushter DH, Pagan MD, Kim D, Nunez Santos M, Lieberman RL et al (2019) Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS One 14(7):e0212382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Valdez C, Ysselstein D, Young TJ, Zheng J, Krainc D (2019) Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet 29(5):716–726

    Google Scholar 

  187. Arrant AE, Roth JR, Boyle NR, Kashyap SN, Hoffmann MQ, Murchison CF et al (2019) Impaired beta-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol Commun 7(1):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Brady RO, Kanfer JN, Shapiro D (1965) Metabolism of glucocerebrosides. Ii. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 18:221–225

    Article  CAS  PubMed  Google Scholar 

  189. Do J, McKinney C, Sharma P, Sidransky E (2019) Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener 14(1):36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Sidransky E (2004) Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab 83(1–2):6–15

    Article  CAS  PubMed  Google Scholar 

  191. Hiraiwa M, Martin BM, Kishimoto Y, Conner GE, Tsuji S, O’Brien JS (1997) Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch Biochem Biophys 341(1):17–24

    Article  CAS  PubMed  Google Scholar 

  192. Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y et al (2018) Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med (Berl) 96(12):1359–1373

    Article  CAS  Google Scholar 

  193. Sandhoff K (2016) Neuronal sphingolipidoses: membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism. Biochimie 130:146–151

    Article  CAS  PubMed  Google Scholar 

  194. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42(3):234–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76(5):467–474

    Article  CAS  PubMed  Google Scholar 

  196. Gallagher MD, Posavi M, Huang P, Unger TL, Berlyand Y, Gruenewald AL et al (2017) A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression. Am J Hum Genet 101(5):643–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nicholson AM, Finch NA, Wojtas A, Baker MC, Perkerson RB 3rd, Castanedes-Casey M et al (2013) TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia. J Neurochem 126(6):781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Brady OA, Zheng Y, Murphy K, Huang M, Hu F (2013) The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet 22(4):685–695

    Article  CAS  PubMed  Google Scholar 

  199. Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM (2014) Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 61:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L et al (2012) TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 32(33):11213–11227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lang CM, Fellerer K, Schwenk BM, Kuhn PH, Kremmer E, Edbauer D et al (2012) Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem 287(23):19355–19365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Schwenk BM, Lang CM, Hogl S, Tahirovic S, Orozco D, Rentzsch K et al (2014) The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J 33(5):450–467

    CAS  PubMed  Google Scholar 

  203. Suzuki H, Matsuoka M (2016) The lysosomal trafficking transmembrane protein 106B is linked to cell death. J Biol Chem 291(41):21448–21460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Busch JI, Martinez-Lage M, Ashbridge E, Grossman M, Van Deerlin VM, Hu F et al (2013) Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathol Commun 1:36

    Article  PubMed  PubMed Central  Google Scholar 

  205. Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TT et al (2017) Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron 95(2):281–96 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Arrant AE, Nicholson AM, Zhou X, Rademakers R, Roberson ED (2018) Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency. Mol Neurodegener 13(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Nicholson AM, Zhou X, Perkerson RB, Parsons TM, Chew J, Brooks M et al (2018) Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathol Commun 6(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Rohrer JD, Warren JD, Fox NC, Rossor MN (2013) Presymptomatic studies in genetic frontotemporal dementia. Rev Neurol (Paris) 169(10):820–824

    Article  CAS  Google Scholar 

  209. Boeve B, Bove J, Brannelly P, Brushaber D, Coppola G, Dever R et al (2020) The longitudinal evaluation of familial frontotemporal dementia subjects protocol: framework and methodology. Alzheimers Dement 16(1):22–36

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rademakers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, X., Kukar, T., Rademakers, R. (2021). Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_14

Download citation

Publish with us

Policies and ethics