Skip to main content

Connected Domination

  • Chapter
  • First Online:
Topics in Domination in Graphs

Part of the book series: Developments in Mathematics ((DEVM,volume 64))

Abstract

A set S of vertices of a connected graph G = (V, E) is a connected dominating set of G if every vertex of V − S is adjacent to at least one vertex of S and the subgraph induced by S is connected. In this chapter, we survey various results on the connected domination parameters obtained over the last 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.H. Akhbari, R. Hasni, O. Favaron, H. Karami and S.M. Sheikholeslami, Inequalities of Nordhaus-Gaddum type for doubly connected domination number. Discrete Applied. Math. 158 (2010) 1465–1470.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.D. Alvarado, S. Dantas and D. Rautenbach, Complexity of comparing the domination number to the independent domination, connected domination, and paired domination numbers. Matemática Contemporânea 44 (2016) 1–8.

    MathSciNet  Google Scholar 

  3. N. Ananchuen, On domination critical graphs with cut vertices having connected domination number 3. Int. Math. Forum 2 (2007) 3041–3052.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Ananchuen, On local edge connected domination critical graphs. Utilitas Math. 82 (2010) 11–23.

    MathSciNet  MATH  Google Scholar 

  5. N. Ananchuen, W. Ananchuen and M.D. Plummer, Matching properties in connected domination critical graphs. Discrete Mathematics 308 (2008) 1260–1267.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Ananchuen, N. Ananchuen and M.D. Plummer, Vertex criticality for connected domination. Utilitas Math. 86 (2011) 45–64.

    MathSciNet  MATH  Google Scholar 

  7. W. Ananchuen, N. Ananchuen and M.D. Plummer, Connected domination: vertex criticality and matchings. Utilitas Math. 89 (2012) 141–159.

    MathSciNet  MATH  Google Scholar 

  8. N. Ananchuen and M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. Discrete Math., 272 (2003) 5–15.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Ananchuen, N. Ananchuen and L. Caccetta, A characterization of 3 − (γ c, 2)-critical claw-free graphs which are not 3 − γ c-critical. Graphs and Combinatorics 26 (2010) 315–328.

    Google Scholar 

  10. M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations. Discrete Appl. Math. 161(4–5) (2013) 466–546.

    Article  MathSciNet  MATH  Google Scholar 

  11. B.H. Arriola and S.R. Canoy Jr., Doubly connected domination in the corona and lexicographic product of graphs. Applied Mathematical Sciences 8 (31) (2014) 1521–1533.

    Article  MathSciNet  Google Scholar 

  12. L. Arseneau, A. Finbow, B. Hartnell, A. Hynick, D. MacLean and L. O’Sullivan, On minimal connected dominating sets. J. Combin. Math. Combin. Comput. 24 (1997) 185–191.

    MathSciNet  MATH  Google Scholar 

  13. S. Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers. Discrete Math. 206 (1999) 45–49.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Arumugam and S. Velammal, Maximum size of a connected graph with given domination parameters. Ars Combin. 52 (1999) 221–227.

    MathSciNet  MATH  Google Scholar 

  15. K. Attalah and M. Chellali, On connected k-domination in graphs. Australasian Jour. of Combin. 55 (2013) 289–298.

    MathSciNet  MATH  Google Scholar 

  16. G. Bacsó, Complete description of forbidden subgraphs in the structural domination problem. Discrete Math. 309 (2009) 2466–2472.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Bacsó and Z. Tuza, Graphs without induced P 5 and C 5. Discuss. Math. Graph Theory 24 (2004) 503–507.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.V. Bankevich, Bounds on the number of leaves of spanning trees in graphs without triangles. J. Math. Sci. 184 (5) (2012) 557–563.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.V. Bankevich and D.V. Karpov, Bounds of the number of leaves of spanning trees. J. Math. Sci. 184(5) (2012) 564–572.

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Baogen, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi and Z. Shangchao, Extremal graphs for inequalities involving domination parameters. Discrete Math. 216 (2000) 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Bauer, F. Harary, J. Nieminen and C. Suffel, Domination alteration sets in graphs. Discrete Math. 47 (1983) 153–161.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Bo and B. Liu, Some inequalities about connected domination number. Discrete Math. 159 (1996) 241–245.

    Article  MathSciNet  MATH  Google Scholar 

  23. P.S. Bonsma, Spanning trees with many leaves in graphs with minimum degree three. SIAM J. Discrete Math. 22(3) (2008) 920–937.

    Article  MathSciNet  MATH  Google Scholar 

  24. P.S. Bonsma, Max-leaves spanning trees is APX-hard for cubic graphs. J. Discrete Algorithms 12 (2012) 14–23.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Bonsma and F. Zickfeld, A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. In H. Broersma (Ed.), WG, in: Lecture Notes in Computer Science, vol.5344, Springer, 2008, pp.66–77.

    Google Scholar 

  26. P. Bonsma and F. Zickfeld, Improved bounds for spanning trees with many leaves. Discrete Math. 312 (6) (2012) 1178–1194.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Borowiecki, A. Fiedorowicz and E. Sidorowicz, Connected domination game. Appl. Anal. Discrete Math. 13 (2019) 261–289.

    Article  MathSciNet  Google Scholar 

  28. R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs. Networks 18 (1988) 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Breu and D.G. Kirkpatrick, Algorithms for dominating and Steiner set problems in cocomparability graphs. Manuscript, 1993.

    Google Scholar 

  30. C. Bujtás, P. Dokyeesun, V. Iršič and S. Klavžar, Connected domination game played on Cartesian products. Open Math. 17 (2019) 1269–1280.

    Article  MathSciNet  Google Scholar 

  31. T. Burton and D.P. Sumner, Domination dot-critical graphs. Discrete Mathematics 306 (2006) 11–18.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Camby and O. Schaudt, The price of connectivity for dominating set: Upper bounds and complexity. Discrete Appl. Math. 177 (2014) 53–59.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Caro, D. West and R. Yuster, Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13 (2) (2000) 202–211.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Caro and R. Yuster, 2-connected graphs with small 2-connected dominating sets. Discrete Math. 269 (2003) 265–271.

    Article  MathSciNet  MATH  Google Scholar 

  35. M.S. Chang, Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput. 27 (1998) 1671–1694.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, On the p-domination, the total domination and the connected domination numbers of graphs. J. Combin. Math. Combin. Comput. 73 (2010) 65–75.

    MathSciNet  MATH  Google Scholar 

  37. M. Chellali, F. Maffray and K. Tablennehas, Connected domination dot-critical graphs. Contributions to Discrete Mathematics 5 (2) (2010) 11–25.

    MathSciNet  MATH  Google Scholar 

  38. X. Chen, On graphs with equal total domination and connected domination numbers. Applied Math. Letters 19 (2006) 472–477.

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Chen and W.C. Shiu, A note on weakly connected domination number in graphs. Ars Combin. 97 (2010) 193–201.

    MathSciNet  MATH  Google Scholar 

  40. X.G. Chen, L. Sun and D.X. Ma, Connected domination critical graphs. Appl. Math. Lett. 17 (5) (2004) 503–507.

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Chen, L. Sun and H. Xing, Characterization of graphs with equal domination and connected domination numbers. Discrete Math. 289 (2004) 129–135.

    Article  MathSciNet  MATH  Google Scholar 

  42. Z. Chengye and C. Feilong, The diameter of connected domination critical graphs. Ars Combinatoria 107 (2012) 537–541.

    MathSciNet  MATH  Google Scholar 

  43. B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit Disk Graphs. Discrete Math. 86 (1990) 165–177.

    Article  MathSciNet  MATH  Google Scholar 

  44. C.J. Colbourn and L.K. Stewart, Permutation graphs: connected domination and Steiner trees. Discrete Math. 86 (1990) 179–189.

    Article  MathSciNet  MATH  Google Scholar 

  45. D.G. Corneil and Y. Perl, Clustering and domination in perfect graphs. Discrete Applied Math. 9 (1984) 27–39.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Cyman, M. Lemańska and J. Raczek, On the doubly connected domination number of a graph. Central European Science Journals 4(1) (2006) 34–45.

    MathSciNet  MATH  Google Scholar 

  47. P. Dankelmann and S. Mukwembi, Upper bounds on the average eccentricity. Discrete Appl. Math. 167 (2014) 72–79.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Dankelmann and F.J. Osaye, Average eccentricity, k -packing and k-domination in graphs. Discrete Math. 342 (5) (2019) 1261–1274.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. D’atri and M. Moscarini, Distance-hereditary graphs, Steiner trees and connected domination. SIAM J. Comput., 17 (1988) 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  50. E. DeLaViña and E. Waller, Spanning trees with many leaves and average distance. Electron. J. Combin. 15 (2008) #R33.

    Google Scholar 

  51. E. DeLaViña, S. Fajtlowicz and E. Waller, On some conjectures of Griggs and Graffiti. DIMACS volume ”Graphs and Discovery: Proceedings of the 2001 Working Group on computer-generated conjectures from graph theoretic and chemical databases, 69 (2005) 119–125.

    Google Scholar 

  52. E. DeLaViña http://cms.uhd.edu/faculty/delavinae/research/wowII/index.htm

  53. W.J. Desormeaux, T.W. Haynes and M.A. Henning, Bounds on the connected domination number of a graph. Discrete Appl. Math. 161 (2013) 2925–2931.

    Article  MathSciNet  MATH  Google Scholar 

  54. W.J. Desormeaux, T.W. Haynes and M.A. Henning, Domination parameters of a graph and its complement. Discuss. Math. Graph Theory 38 (2018) 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  55. W.J. Desormeaux, T.W. Haynes and L. van der Merwe, Connected domination stable graphs upon edge addition. Quaestiones Mathematicae 38 (2015) 841–848.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Ding, T. Johnson and P. Seymour, Spanning trees with many leaves. J. Graph Theory 37(4) (2001) 189–197.

    Article  MathSciNet  MATH  Google Scholar 

  57. G.S. Domke, J.H. Hattingh and L.R. Markus, On weakly connected domination in graphs II. Discrete Math. 305 (2005) 112–122.

    Article  MathSciNet  MATH  Google Scholar 

  58. D.-Z. Du and P.-J. Wan, Connected dominating set: theory and applications. Springer, New York, 2013.

    Book  MATH  Google Scholar 

  59. P. Duchet and H. Meyniel, On Hadwiger’s number and the stability number. Graph theory (Cambridge, 1981), North-Holland Math. Stud., vol. 62, North- Holland, Amsterdam, 71–73 (1982).

    Google Scholar 

  60. J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs. Discrete Math. 167/168 (1997) 261–269.

    Article  MathSciNet  MATH  Google Scholar 

  61. R.D. Dutton and R.C. Brigham, An extremal problem for edge domination in insensitive graphs. Discrete Appl. Math. 20 (1988) 113–125.

    Article  MathSciNet  MATH  Google Scholar 

  62. E.S. Elmallah and L.K. Stewart, Domination in polygon graphs. Congr. Numer. 77 (1990) 63–76.

    MathSciNet  MATH  Google Scholar 

  63. O. Favaron, H. Karami and S.M. Sheikholeslami, Connected domination subdivision numbers of graphs. Utilitas Math. 77 (2008) 101–111.

    MathSciNet  MATH  Google Scholar 

  64. O. Favaron, D. Kratsch, Ratios of domination parameters. Advances in Graph Theory, ed. V. R. Kulli, Vishwa Intern. Publications, 173–182 (1991).

    Google Scholar 

  65. J.F. Fink and M.S. Jacobson, n-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons. New York 283–300 (1985)

    Google Scholar 

  66. J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs. Networks 25 (1995) 41–43.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Ghoshal, R. Laskar and D. Pillone, Connected domination and c-irredundance. Congr. Numer. 107 (1995) 161–171.

    MathSciNet  MATH  Google Scholar 

  68. W. Goddard and M.A. Henning, Clique/connected/total domination perfect graphs. Bulletin of the ICA 41 (2004) 20–21.

    MathSciNet  MATH  Google Scholar 

  69. J.R. Griggs, D.J. Kleitman and A. Shastri, Spanning trees with many leaves in cubic graphs. J. Graph Theory 13(6) (1989) 669–695.

    Article  MathSciNet  MATH  Google Scholar 

  70. J.R. Griggs and M. Wu, Spanning trees in graphs of minimum degree 4 or 5. Discrete Math.104(2) (1992) 167–183.

    Google Scholar 

  71. S. Guha and S. Khuller, Approximation algorithms for connected dominating sets. Algorithmica 20 (4) (1998) 374–387.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Hansberg, Bounds on the connected k-domination number. Discrete Appl. Math. 158 no. 14 (2010) 1506–1510.

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Hansberg, D. Meierling and L. Volkmann, Distance domination and distance irredundance in graphs. Electronic Journal of Combin. 14 (2007) #R35.

    Google Scholar 

  74. A. Hansberg, D. Meierling and L. Volkmann, A general method in the theory of domination in graphs. Int. J. Comput. Math. 87 (2010) 2915–2924.

    Article  MathSciNet  MATH  Google Scholar 

  75. B.L. Hartnell and D.F. Rall, Connected domatic number in planar graphs. Czechoslovak Math. J. 51(1) (2001) 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  76. B.L. Hartnell and P.D. Vestergaard, Dominating sets with at most k components. Ars Combinatoria 74 (2005) 223–229.

    MathSciNet  MATH  Google Scholar 

  77. J.H. Hattingh and M.A. Henning, Distance irredundance in graphs. Graph Theory, Combinatorics, and Applications, John Wiley & Sons, Inc. 1 (1995) 529–542.

    Google Scholar 

  78. J.H. Hattingh and M. A. Henning, Bounds relating the weakly connected domination number to the total domination number and the matching number. Discrete Appl. Math. 157 (2009) 3086–3093.

    Article  MathSciNet  MATH  Google Scholar 

  79. S.T. Hedetniemi and R. Laskar, Connected domination in graphs. Graph Theory and Combinatorics, Eds. B. Bollobàs, Academic Press (London, 1984) 209–218.

    Google Scholar 

  80. M.A. Henning, A survey of selected recent results on total domination in graphs. Discrete Math. 309 (2009) 32–63.

    Article  MathSciNet  MATH  Google Scholar 

  81. M.A. Henning, N. Ananchuen and P. Kaemawichanurat, Traceability of connected domination critical graphs. Appl. Math. Comput. 386 (2020) 125455.

    MathSciNet  Google Scholar 

  82. R.-W. Hung and M.-S. Chang, A simple linear algorithm for the connected domination problem in circular-arc graphs. Discuss. Math. Graph Theory 24 (2004 ) 137–145.

    Article  MathSciNet  MATH  Google Scholar 

  83. J.P. Joseph and S. Arumugam, Domination and connectivity in graphs. Intern. J. Management Systems 8(3) (1992) 233–236.

    Google Scholar 

  84. P. Kaemawichanurat, Inequalities of independence number, clique number and connectivity of maximal connected domination critical graphs. arXiv:1906.07619v1 [math.CO].

    Google Scholar 

  85. P. Kaemawichanurat and N. Ananchuen, On 4 − γ c -critical graphs with cut vertices. Utilitas Math. 82 (2010) 253–268.

    Google Scholar 

  86. P. Kaemawichanurat and N. Ananchuen, Connected domination critical graphs with cut vertices. Discuss. Math. Graph Theory, 40 (2020) 1035–1055.

    Article  MathSciNet  MATH  Google Scholar 

  87. P. Kaemawichanurat and L. Caccetta, Hamiltonicity of connected domination critical graphs. Ars Combinatoria 136 (2018) 127–151.

    MathSciNet  MATH  Google Scholar 

  88. P. Kaemawichanurat and L. Caccetta, Hamiltonicity of domination critical claw-free graphs. J. Combin. Math. Combin. Comput. 103 (2017) 39–62.

    MathSciNet  MATH  Google Scholar 

  89. P. Kaemawichanurat, L. Caccetta and N. Ananchuen, Critical graphs with respect to total domination and connected domination. Australas. J. Combin. 65 (2016) 1–13.

    MathSciNet  MATH  Google Scholar 

  90. P. Kaemawichanurat, L. Caccetta and N. Ananchuen, Bounds on the order of connected domination vertex critical graphs. J. Combin. Math. Combin. Comput. 107 (2018) 73–96.

    MathSciNet  MATH  Google Scholar 

  91. P. Kaemawichanurat and T. Jiarasuksakun, Some results on the independence number of connected domination critical graphs. AKCE International Journal of Graphs and Combinatorics 15 (2018) 190–196.

    Article  MathSciNet  MATH  Google Scholar 

  92. H. Karami, R. Khoeilar and S. M. Sheikholeslami, Doubly connected domination subdivision numbers of graphs. Matematicki Vesnik 3 (2012) 232–239.

    MathSciNet  MATH  Google Scholar 

  93. H. Karami, S.M. Sheikholeslami, A. Khodkar and D. West, Connected domination number of a graph and its complement. Graphs Combin. 28(1) (2012) 123–131.

    Article  MathSciNet  MATH  Google Scholar 

  94. D.V. Karpov, Spanning trees with many leaves: new lower bounds in terms of the number of vertices of degree 3 and at least 4. J. Math. Sci. 196(6) (2014) 747–767.

    Article  MathSciNet  MATH  Google Scholar 

  95. D.V. Karpov, Spanning trees with many leaves: lower bounds in terms of the number of vertices of degree 1, 3 and at least 4. J. Math. Sci. 196(6) (2014) 768–783.

    Article  MathSciNet  MATH  Google Scholar 

  96. J.M. Keil, The complexity of domination problems in circle graphs. Discrete Applied Math., 42 (1993) 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  97. J.M. Keil, R. Laskar and P.D. Manuel, The vertex clique cover problem and some related problems in chordal graphs. SIAM conference on Discrete Algorithms, Albuquerque, New Mexico, June 1994.

    Google Scholar 

  98. D.J. Kleitman and D.B. West, Spanning trees with many leaves. SIAM J. Discrete Math. 4(1) (1991) 99–106.

    Article  MathSciNet  MATH  Google Scholar 

  99. M. Kouider and P.D. Vestergaard, Generalized connected domination in graphs. Discrete Math. Theoretical Comput. Sc. 8 (2006) 57–64.

    MathSciNet  MATH  Google Scholar 

  100. D. Kratsch and L. Stewart, Domination on cocomparability graphs. SIAM J. Discrete Math., 6(3) (1993) 400–417.

    Article  MathSciNet  MATH  Google Scholar 

  101. R. Laskar and K. Peters, Vertex and edge domination parameters in graphs. Congr. Numer. 48 (1985) 291–305.

    MathSciNet  MATH  Google Scholar 

  102. R. Laskar and J. Pfaff, Domination and irredundance in split graphs. Technical report 430, Dept. Mathematical Sciences, Clemson Univ., 1983.

    Google Scholar 

  103. M. Lemańska, Domination numbers in graphs with removed edge or set of edges. Discuss. Math. Graph Theory 25 (2005 ) 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  104. M. Lemańska, Lower bound on the weakly connected domination number of a tree. Australas. J. Combin. 37 (2007) 67–71.

    MathSciNet  MATH  Google Scholar 

  105. M. Lemańska and A. Patyk, Weakly connected domination critical graphs. Opuscula Mathematica 28(3) (2008) 325–330.

    MathSciNet  MATH  Google Scholar 

  106. M. Lemańska and J. Raczek, Weakly connected domination stable trees. Czechoslovak Math. J. 59(134) (2009) 95–100.

    Article  MathSciNet  MATH  Google Scholar 

  107. P. Lemke, The maximum leaf spanning tree problem for cubic graphs is NP-complete. IMA Preprint Series #428, Minneapolis, 1988.

    Google Scholar 

  108. S. Li, On connected k-domination numbers of graphs. Discrete Mathematics 274 (2004) 303–310.

    Article  MathSciNet  MATH  Google Scholar 

  109. P.C. Li and M. Toulouse, Maximum leaf spanning tree problem for grid graphs. J. Combin. Math. Combin. Comput. 73 (2010) 181–193.

    MathSciNet  MATH  Google Scholar 

  110. H. Li, Y. Yang and B. Wu, Making a dominating set of a graph connected. Discuss. Math. Graph Theory 38 (2018) 947–962.

    Article  MathSciNet  MATH  Google Scholar 

  111. H. Li, Y. Yang and B. Wu, 2-edge-connected dominating sets and 2-connected dominating sets of a graph. J. Combinat. Optimization 31(2) (2016) 713–724.

    Article  MathSciNet  MATH  Google Scholar 

  112. Y.D. Liang, Steiner set and connected domination in trapezoid graphs. Inform. Process. Lett. 56 (1995) 101–108.

    Article  MathSciNet  Google Scholar 

  113. H. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29 (1) (1998) 132–141.

    Article  MathSciNet  MATH  Google Scholar 

  114. P. Mafuta, Leaf number and hamiltonian C 4-free graphs. Afrika Matematika 28(7–8) (2017) 1067–1074.

    Article  MathSciNet  MATH  Google Scholar 

  115. P. Mafuta, S. Mukwembi and S. Munyira, Spanning paths in graphs. Discrete Appl. Math. 255 (2019) 278–282.

    Article  MathSciNet  MATH  Google Scholar 

  116. P. Mafuta, J.P. Mazorodze, J. Mushanyu and G. Nhawu, Graphs with forbidden subgraphs and leaf number. Afrika Matematika 29 (2018) 1073–1080.

    Article  MathSciNet  MATH  Google Scholar 

  117. P. Mafuta, S. Mukwembi, S. Munyira and B.G. Rodrigues, Lower bounds on the leaf number in graphs with forbidden subgraphs. Quaestiones Math. 40(1) (2017) 139–149.

    Article  MathSciNet  MATH  Google Scholar 

  118. P. Mafuta, S. Mukwembi, S. Munyira and T. Vetrik, Hamiltonicity, minimum degree and leaf number. Acta Math. Hungar. 152(1) (2017) 217–226.

    Article  MathSciNet  MATH  Google Scholar 

  119. A. Meir and J.W. Moon, Relations between packing and covering numbers of trees. Pacific J. Math. 61 (1) (1975) 225–233.

    Article  MathSciNet  MATH  Google Scholar 

  120. D.A. Mojdeh and N.J. Rad, On an open problem concerning total domination critical graphs. Exp. Math. 25 (2007) 175–179.

    Article  MathSciNet  MATH  Google Scholar 

  121. M. Moscarini, Doubly chordal graphs, Steiner trees and connected domination. Networks 23 (1993) 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  122. S. Mukwembi, Size, order, and connected domination. Canad. Math. Bull. 57(1) (2014) 141–144.

    Article  MathSciNet  MATH  Google Scholar 

  123. H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. Theoretical Computer Science 53 (1987) 257–265.

    Article  MathSciNet  MATH  Google Scholar 

  124. J. Paulraj Joseph and S. Arumugam, On the connected domatic number of a graph. J. Ramanujan Math. Soc. 9 (1994) 69–77.

    MathSciNet  MATH  Google Scholar 

  125. J. Paulraj Joseph and S. Arumugam, On connected cutfree domination in graphs. Indian J. pure appl. Math. 23(9) (1992) 643–647.

    MathSciNet  MATH  Google Scholar 

  126. C. Payan, M. Tchuente and N.H. Xuong, Arbres avec un nombre maximum de sommets pendants. Discrete Math. 49 (1984) 267–273.

    Article  MathSciNet  MATH  Google Scholar 

  127. J. Pfaff, R. Laskar and S.T. Hedetniemi, NP-completeness of total and connected domination, and irredundance for bipartite graphs. Technical Report 428, Dept. Mathematical Sciences, Clemson Univ., 1983.

    Google Scholar 

  128. B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number. Discrete Math. 191 (1998) 159–169.

    Article  MathSciNet  MATH  Google Scholar 

  129. A. Reich, Complexity of the maximum leaf spanning tree problem on planar and regular graphs. Theoretical Computer Science 626 (2016) 134–143.

    Article  MathSciNet  MATH  Google Scholar 

  130. L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K. Ko, A greedy approximation for minimum connected dominating sets. Theoret. Comput. Sci., 329 (2004) 325–330.

    Article  MathSciNet  MATH  Google Scholar 

  131. L. Sanchis, On the number of edges of a graph with a given connected domination number. Discrete Math. 214 (1–3) (2000) 193–210.

    Article  MathSciNet  MATH  Google Scholar 

  132. L. Sanchis, On the number of edges in graphs with a given weakly connected domination number. Discrete Math. 257(1) (2002) 111–124.

    Article  MathSciNet  MATH  Google Scholar 

  133. E. Sampathkumar and H.B. Walikar, The connected domination number of a graph. J. Math. Phys. Sci. 13(6) (1979) 607–613.

    MathSciNet  MATH  Google Scholar 

  134. O. Schaudt, On graphs for which the connected domination number is at most the total domination number. Discrete Appl. Math. 160 (2012) 1281–1284.

    Article  MathSciNet  MATH  Google Scholar 

  135. O. Schaudt and R. Schrader, The complexity of connected dominating sets and total dominating sets with specified induced subgraphs. Information Processing Letters 112 (2012) 953–957.

    Article  MathSciNet  MATH  Google Scholar 

  136. J. Simmons, Closure operations and hamiltonian properties of independent and total domination critical graphs. Ph.D. Thesis, University of Victoria (2005).

    Google Scholar 

  137. J.A. Storer, Constructing full spanning trees for cubic graphs. Inform. Process. Lett. 13(1) (1981) 8–11.

    Article  MathSciNet  MATH  Google Scholar 

  138. L. Sun, Some results on connected domination in graphs. Mathematica Applicata (1992)(1) 29–34 (in Chinese).

    MATH  Google Scholar 

  139. J.D. Taylor and L.C. van der Merwe, A note on connected domination critical graphs. J. Combin. Math. Combin. Comput. 100 (2017) 3–8.

    MathSciNet  MATH  Google Scholar 

  140. S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. Combinatorica 27(4) (2007) 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  141. F. Tian and J.-. Xu, On distance connected domination numbers of graphs. Ars Combinatoria 84 (2007) 357–367.

    Google Scholar 

  142. Z. Tuza, Hereditary domination in graphs: characterization with forbidden induced subgraphs. SIAM J. Discrete Math. 22(3) (2008) 849–853.

    Article  MathSciNet  MATH  Google Scholar 

  143. S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics. Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli, (1997).

    Google Scholar 

  144. L. Volkmann, Connected p-domination in graphs. Util. Math. 79 (2009) 81–90.

    MathSciNet  MATH  Google Scholar 

  145. H.B. Walikar and B.D. Acharya, Domination critical graphs. Nat. Acad. Sci. Lett. 2 (1979) 70–72.

    MATH  Google Scholar 

  146. C. Wang, Z. Hu and X. Li, A constructive characterization of total domination vertex critical graphs. Discrete Math. 309 (2009) 991–996.

    Article  MathSciNet  MATH  Google Scholar 

  147. J. Wang, An inequality between the connected domination number and the irredundance number for a graph. Mathematica Applicata (1995)–04 (in Chinese).

    Google Scholar 

  148. D. West https://faculty.math.illinois.edu/~west/regs/graffiti.html

  149. K. White, M. Farber and W. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs. Networks 15 (1985) 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  150. W. Wu, H. Du, X. Jia, Y. Li and S. C.-H. Huang, Minimum connected dominating sets and maximal independent sets in unit disk graphs. Theoret. Comput. Sci 352 (2006) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  151. J.-M. Xu, F. Tian and J. Huang, Distance irredundance and connected domination numbers of a graph. Discrete Mathematics 306 (2006) 2943–2953.

    Article  MathSciNet  MATH  Google Scholar 

  152. H. Yu and T. Wang, An inequality on connected domination parameters. Ars Combin. 50 (1998) 309–315.

    MathSciNet  MATH  Google Scholar 

  153. B. Zelinka, Connected domatic number of a graph. Mathematica Slovaca 36 (4) (1986) 387–392.

    MathSciNet  MATH  Google Scholar 

  154. W. Zhuang, Connected domination in maximal outerplanar graphs. Discrete Appl. Math., 283 (2020) 533–541.

    Article  MathSciNet  MATH  Google Scholar 

  155. I.E. Zverovich, Perfect connected-dominant graphs. Discuss. Math. Graph Theory 23 (2003) 159–162.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Nacéra Meddah for her help in drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Chellali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chellali, M., Favaron, O. (2020). Connected Domination. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds) Topics in Domination in Graphs. Developments in Mathematics, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-030-51117-3_4

Download citation

Publish with us

Policies and ethics