Skip to main content
  • 912 Accesses

Abstract

It is rather unfortunate that with over-specializations, students, and perhaps many physicists, even established ones, would find it difficult to keep up with all the exciting developments going on in fundamental modern theoretical physics, and are even less familiar with their underlying technicalities. It is quite common that a student who is in the process of specializing in one area of physics, or even a physicist working in a particular area, would know very little or almost nothing about other areas of physics. They might know, or have heard, for example, that the Higgs field gives mass to particles, in the electroweak theory, which unifies electromagnetic and weak interactions, without really realizing that in describing quantum electrodynamics no Higgs field was ever introduced to give mass to the electron. They might know or have just heard of the inflation of the Universe as a stage in its evolution in which it was expected to have undergone a gigantic exponential expansion without knowing why inflation was needed in describing the evolution of the Universe in the first place and knowing even less at which stage this enormous expansion was expected to have occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This was even announced on CNN and BBC.

  2. 2.

    Feynman [42], page 1.

  3. 3.

    See Schwinger [128, 129]. An extensive analysis of this formalism in terms of selective measurements including various applications see Chaps. 1 & 8 of Manoukian [82].

  4. 4.

    Dirac [22].

  5. 5.

    See Schrödinger [117].

  6. 6.

    Zurek [159].

  7. 7.

    See Manoukian [89].

  8. 8.

    Klein [65], Dyson and Lenard [24, 68].

  9. 9.

    Lieb and Thirring [69].

  10. 10.

    Dyson [23].

  11. 11.

    Tomonaga [143].

  12. 12.

    See Manoukian and Sirininlakul [81].

  13. 13.

    See: Dyson [23]; Dyson and Lenard [24]; Lenard and Dyson [68]; Lieb [70]; Manoukian and Muthaporn [78]; Manoukian and Sirinilakul [79].

  14. 14.

    This key result is established rigorously in the monumental paper by Lieb and Thirring [69].

  15. 15.

    For the collapsing stage of “bosonic matter” see: Manoukian, Muthaporn and Sirininlakul [83].

  16. 16.

    Einstein [26]. See also Einstein et al. [32].

  17. 17.

    For relevant experiments, see Waddoups, Edwards and Merrill [147]; Babcock and Bergman [8]. See also Beckmann and Mandics [10]. For a test of the independence of the speed of the light source, in the microscopic domain of elementary particles, see, Alväger and et al. [6]. For a macroscopic test at cosmological distances in binary star systems, see, Brecher [15]. See also, e.g., Ragulsky [102], for the constancy of the speed of light in all directions. For the independence of the speed of light of its frequency, see, e.g., Schaefer [113].

  18. 18.

    Quite a fairly detailed account of many aspects of QFT, including the historical development of the subject, since its birth in 1926 up to present days, is given in the introductory chapter of my book: Manoukian [87], and would certainly be most valuable for readers at all levels.

  19. 19.

    Schwinger [123, 126, 127], Feynman [41], Tomonaga [142].

  20. 20.

    Tanabashi [138], Gross [51], Wilczek [153], Politzer [100].

  21. 21.

    Glashow [49], Weinberg [149, 150], Salam [112].

  22. 22.

    This was established by Gross, Wilczek and Politzer, see their Nobel lectures [51, 100, 153], respectively. See also the early work of Vanyashin and Terentyev [145].

  23. 23.

    An interesting applications of this property is applied to explain the observation of the so-called “deep inelastic experiment” (see, e.g. Friedman and Kendall [47]) which gives support that a nucleon, such as the proton, contains point-like constituents which are identified with quarks and gluons which are collectively called partons, a term coined by Feynman [40]. For a systematic theoretical analysis of deep inelastic scattering, see Manoukian [87], pp. 429–456.

  24. 24.

    See Salam [110, 111].

  25. 25.

    Manoukian [76]. See also references therein.

  26. 26.

    See Bogoliubov and Parasiuk [13].

  27. 27.

    See Hepp [57], Zimmermann [158].

  28. 28.

    Manoukian [76].

  29. 29.

    Zeidler [157]. See also Figuora and Gracia-Bondia [43] regarding EP.

  30. 30.

    Manoukian [75, 76].

  31. 31.

    See Streater [137]. For a historical developments of renormalizaton see the latter as well as Zeidler [157]. For other rather very specialized work, but of importance, on renormalization theory see Becchi, Rouet and Stora [9]; Veltman [146], \({}'\)t Hooft [140], see also references therein.

  32. 32.

    For the experiments concerning the observation of the Higgs boson signal, see, Aad et al. [1]; and Chatrchyan et al. [17]. See also the Nobel Lectures of Englert [33] and Higgs [58], and references therein.

  33. 33.

    Weisskopf [151] on page 7, 11th line from below. In “Growing up with field theory, and recent trends in particle physics”. The 1979 Bernard Gregory Lectures at CERN, 29 pages. CERN: Geneva.

  34. 34.

    See Martin and Glashow [90], p. 16. See also Johnson [63], p. 96.

  35. 35.

    Schwinger [121].

  36. 36.

    The legendary Victor Weisskopf in: [152], p. 17, states that Schwinger was the first who suggested that the weak interactions should be interpreted as transmitted by boson fields and that his original idea initiated an impressive development that culminated in the unification of electromagnetic interactions.

  37. 37.

    Feynman [37,38,39, 41]. See also Dirac [21], Dewitt [18, 19].

  38. 38.

    Schwinger [120, 122, 124, 125, 127]. See also Johnson [62]; Lam [67]; Manoukian [77, 87].

  39. 39.

    See, e.g., Bell [11].

  40. 40.

    See, e.g., Manoukian and Yongram [80, 156].

  41. 41.

    Supersymmetry was introduced by Gol’fand and Likhtman [50].

  42. 42.

    A fairly detailed account of supersymmetry may be found in my book Manoukian [88].

  43. 43.

    A fairly detailed account of string theory may be found in my book Manoukian [88]. All the massless fields excitations in so-called bosonic and superstrings types have been investigated in Manoukian [84,85,86].

  44. 44.

    See Yang and Mills [155], Shaw [134].

  45. 45.

    Einstein [27, 28] [A translation of which may be found in the books: Lorentz et al. [73, 74]].

  46. 46.

    The reader need not have any background in GR as everything will be derived in coming chapters from scratch.

  47. 47.

    For some tests of the equivalence principle see these useful references: Misner et al. [94], Sect. 38.6; Turyshev [144]; Will [154]; Di Casola et al. [20]; Arai et al. [7].

  48. 48.

    Abbott et al. [2, 3]; Castelvecchi and Witze [16].

  49. 49.

    Einstein [29, 30].

  50. 50.

    For a survey of solar system tests, see Will [154]. For recent experiments on light deflection, see also Fomalont and Kopeikin [44]; Kopeikin and Fomalont [66]; Titov and Girdiuk [141].

  51. 51.

    See Shapiro [131, 132], Bertotti et al. [12].

  52. 52.

    Thirring and Lense [139]. It is reprinted in: Ruffini and Sigismondi [109], and a translated version is given in: Mashoon, Hehl and Theiss [91].

  53. 53.

    Pugh [101].

  54. 54.

    Schiff [114, 115].

  55. 55.

    Everitt et al. [34, 35].

  56. 56.

    For a historical account of the term “Black Hole” see, e.g., Siegfried [133].

  57. 57.

    Mitchell [95].

  58. 58.

    See, e.g., Abbott et al. [2, 3].

  59. 59.

    See Akiyama et al. [4], Roelofs et al. [108]. See also Bouman et al. [14].

  60. 60.

    Schwarzschild [118, 119].

  61. 61.

    Einstein [27, 28] [A translation of which may be found in the books: Lorentz et al. [73, 74]].

  62. 62.

    When it all began, in the early 40s, the very first two members of the School of Theoretical Physics were Erwin Schrödinger and Walter Heitler.

  63. 63.

    It is unfortunate that he had just submitted a paper for publication and the proofs of the accepted paper arrived just a few days after his death, while I was still at DIAS. This, in some sense, should encourage all readers not to give up physics at an early age.

  64. 64.

    See Kerr [64].

  65. 65.

    Einstein and Rosen [31].

  66. 66.

    See Frolov and Novikov [48].

  67. 67.

    Penrose [97].

  68. 68.

    See Hawking [56].

  69. 69.

    If you are a general relativist, it is certainly worth studying string theory.

  70. 70.

    See, e.g., Perlmutter [99], Schmidt [116], Riess [104], who were awarded the Nobel Prize.

  71. 71.

    A helpful analogy for visualizing that there is no center of the Universe and no place in it is privileged, is to compare space with the surface of an expanding balloon as suggested by Arthur Eddington [25]. See also Hoyle [60]. Consider galaxies as points marked on the surface of a balloon. As the balloon inflates, the distances between the dots increase in the same way as the distances between the galaxies. All galaxies on the surface of the balloon are equivalent and none is special. One may then visualize the surface of the balloon as representing our three dimensional space.

  72. 72.

    Robertson [105,106,107]; Walker [148].

  73. 73.

    Friedmann [45, 46].

  74. 74.

    Tanabashi [138], Olive [96].

  75. 75.

    Hubble [61], see also Mayall [92] for extensive references to Hubble’s work on our expanding Universe.

  76. 76.

    Penzias and Wilson [98].

  77. 77.

    McKellar [93].

  78. 78.

    See Starobinsky, sometimes referred to as the father of inflation, [135, 136]; Guth [52,53,54]; Guth and Kaiser [55]; Linde [71, 72]; Albrecht and Steinhardt [5]. See also Hoyle and Narlikar [59].

  79. 79.

    Baryon numbers \({\pm }1\) are assigned to baryons/antibaryons, and 0 to mesons and leptons.

  80. 80.

    A monopole may carry an isolated magnetic pole, a north pole or a south pole without, respectively, of a compensating pole.

  81. 81.

    Once a colleague (Eduard Prugovec̆ki from University of Toronto) made the amusing remark: “How could they speak the same language if they have never met?”.

References

  1. Aad, G., et al. (2012). Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at LHC. Physics Letters B, 716, 1–29.

    ADS  Google Scholar 

  2. Abbott, B. P., et al. (2016). Observational waves from a binary black hole merger. Physical Review Letters, 116, 061102.

    ADS  MathSciNet  Google Scholar 

  3. Abbott, B. P. et al. (2016). Astrophysical implications of the binary black hole merger GW150914, Astrophysical Journal Letters, 818, L22 (2016).

    Google Scholar 

  4. Akiyama, K., et al. (2019). First M87 event horizon telescope results. I. The shadow of the supermassive black hole. The Astrophysical Journal Letters, 875, L1, 1–17.

    Google Scholar 

  5. Albrecht, A., & Steinhardt, P. J. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48, 1220–1223.

    ADS  Google Scholar 

  6. Alväger, T., et al. (1964). Measuring the velocity of light emitted by fast sources, using accelerated particles. Physics Letters, 12, 260–262.

    ADS  Google Scholar 

  7. Arai, S., Nitta, D., & Tashiro, H. (2016). Test of the Einstein equivalence principle with spectral distortions in the cosmic microwave background. Physical Review, D, 94, 124048 (pp. 6).

    Google Scholar 

  8. Babcock, G. C., & Bergman, T. G. (1964). Determination of the constancy of the speed of light. Journal of the Optical Society of America, 54, 147–151.

    ADS  Google Scholar 

  9. Becchi, C., Rouet, A., & Stora, R. (1976). Renormalization of gauge theories. Annals of Physics, 98, 287–321.

    ADS  MathSciNet  Google Scholar 

  10. Beckmann, P., & Mandics, P. (1965). Test of the constancy of the velocity of electromagnetic radiation in high vacuum. Radio Science Journal of Research, 69D, 623–628.

    Google Scholar 

  11. Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics (2nd ed.). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  12. Bertotti, B., Iess, L., & Tortora, P. (2003). A test of general relativity using radio links with the Cassini spacecraft. Nature, 425, 374–376.

    ADS  Google Scholar 

  13. Bogoliubov, N. N., & Parasiuk, O. S. (1958). On the multiplication of propagators in quantum field theory. Acta Physica Mathematica, 97, 227–266. (Original German Title: Über die multiplikation der kausalfunctionen in der quantentheorie der felder.)

    Google Scholar 

  14. Bouman, K., et al. (2016). Computational imaging for VLBI image reconstruction. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 913–922).

    Google Scholar 

  15. Brecher, K. (1977). Is the speed of light independent of the source? Physical Review Letters, 39, 1051–1054. [Erratum: ibid., 1236.]

    Google Scholar 

  16. Castelvecchi, D., & Witze, A. (2016). Einstein’s gravitational waves found at last. Nature News, 2016, 19361.

    Google Scholar 

  17. Chatrchyan, S., et al. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716, 30–61.

    ADS  Google Scholar 

  18. DeWitt, B. (1964). Theory for radiative corrections for non-abelian gauge fields. Physical Review Letters, 12, 742–746.

    ADS  MathSciNet  Google Scholar 

  19. DeWitt, B. (1967). Quantum theory of gravity. II. The manifestly covariant theory. Physical Review, 162, 1195–1239.

    ADS  MATH  Google Scholar 

  20. Di Casola, E., Liberati, S., & Sonego, S. (2015). Nonequivalence of equivalence principles. American Journal of Physics, 83, 39–49.

    Google Scholar 

  21. Dirac, P. A. M. (1933). The Lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion, 3, 64–72.

    Google Scholar 

  22. Dirac, P. A. M. (2012). The principles of quantum mechanics (2012 ed.). La Vergne, Tennessee: www.bnpublishing.net.

  23. Dyson, F. J. (1967). Ground-state energy of a finite system of charged particles. Journal of Mathematical Physics (NY), 8, 1538–1545.

    ADS  MathSciNet  Google Scholar 

  24. Dyson, F. J., & Lenard, A. (1967). Stability of matter. I. Journal of Mathematical Physics (NY), 8, 423–434.

    ADS  MathSciNet  MATH  Google Scholar 

  25. Eddington, A. (1988). The expanding universe. Cambridge: Cambridge University Press. [First published in 1933.]

    Google Scholar 

  26. Einstein, A. (1905). Zur elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921.

    ADS  MATH  Google Scholar 

  27. Einstein, A. (1915). Die feldgleichungen der gravitation. Preussischen Akademie der Wissenschaften zu Berlin, Sitzungsberichte, 844–847.

    Google Scholar 

  28. Einstein, A. (1916). Die grundlage der allgemeinen relativitätstheorie. Annalen der Physik, 49, 769–822.

    ADS  MATH  Google Scholar 

  29. Einstein, A. (1916). Näherungsweise Integration der feldgleichungen der gravitation. Preussischen Akademie der Wissenschaften Berlin, Sitzungsberichte, 688–696.

    Google Scholar 

  30. Einstein, A. (1918). Über gravitationswellen. Preussischen Akademie der Wissenschaften Berlin, Sitzungsberichte, 154–167

    Google Scholar 

  31. Einstein, A., & Rosen, N. (1935). The particle problem in the general theory of relativity. Physical Review, 48, 73–77.

    Article  ADS  MATH  Google Scholar 

  32. Einstein, A., Lorentz, H. A., Weyl, H., & Minkowski, H. (1952). The principle of relativity. New York: Dover Publications.

    MATH  Google Scholar 

  33. Englert, F. (2014). The BEH mechanism and its scalar boson. Reviews of Modern Physics, 86, 843–850.

    Article  ADS  MATH  Google Scholar 

  34. Everitt, C. W. F., et al. (2011). Gravity probe B: Final results of a space experiment to test general relativity. Physical Review Letters, 106, 22110.

    Article  Google Scholar 

  35. Everitt, C. W. F., et al. (2015). The gravity probe B test of general relativity. Classical and Quantum Gravity, 32, 224001 (29 pp.).

    Google Scholar 

  36. Ewing, A. E. (1964). “Black holes” in space. Science News Letter for January 18, 1964, issue.

    Google Scholar 

  37. Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20, 367–387.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Feynman, R. P. (1963). Quantum theory of gravitation. Acta Physica Polonica, 24, 697–722.

    MathSciNet  Google Scholar 

  39. Feynman, R. P., & Hibbs, A. R. (1965). Quantum mechanics and path integrals. New York: McGraw-Hill.

    MATH  Google Scholar 

  40. Feynman, R. P. (1969). The behavior of hadron collisions at extreme energies. In Proceedings of the 3rd Topical Conference on High Energy Collisions. Stony Brook, New York: Gordon & Breach.

    Google Scholar 

  41. Feynman, R. P. (1972). The development of the space-time view of quantum electrodynamics. In Nobel Lectures, Physics 1963–1970. 11 Dec 1965. Amsterdam: Elsevier.

    Google Scholar 

  42. Feynman, R. P. (1982). The theory of fundamental processes (p. 1). Menlo Park, California: The Benjamin/Cummings Publishing Co., 6th Printing.

    Google Scholar 

  43. Figuora, H., & Gracia-Bondia, J. M. (2004). The uses of Connes and Kreimer’s algebraic formulation of renormalization. International Journal of Modern Physics A, 19, 2739–2754. arXiv:hep-th/0301015v2.

  44. Fomalont, E. B., & Kopeikin, S. M. (2003). The measurement of the light deflection from Jupiter: Experimental results. Astrophysical Journal, 598, 704–711.

    Article  ADS  Google Scholar 

  45. Friedmann, A. (1922). Über die krümmung des raumes. Zeitschrift für Physik, 10, 377–386. (English translation in: Friedman, A. (1999). On the curvature of space. General Relativity and Gravitation, 31, 1991–2000.)

    Google Scholar 

  46. Friedmann, A. (1924). Über die möglichkeit einer welt mit konstanter negativer krümmung des raumes. Zeitschrift für Physik, 21, 326–332. (English translation in: Friedmann, A. (1999). On the possibility of a world with constant negative curvature of space. General Relativity and Gravitation, 31, 2001–2008.)

    Google Scholar 

  47. Friedman, J. I., & Kendall, W. H. (1972). Deep inelastic electron scattering. Annual Review of Nuclear and Particle Science, 22, 203–254.

    Article  ADS  Google Scholar 

  48. Frolov, V. P., & Novikov, I. D. (1998). Black hole physics: Basic concepts and new developments. AA Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  49. Glashow, S. L. (1980). Towards a unified theory: Threads in a tapestry. Reviews of Modern Physics, 52, 539–543.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Gol’fand, A., & Likhtman, E. P. (1971). Extension of the Poincaré group generators and violation of P invariance. JETP Letters, 13, 323–326.

    ADS  Google Scholar 

  51. Gross, D. J. (2005). The discovery of asymptotic freedom and the emergence of QCD. Reviews of Modern Physics, 77, 837–849.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Guth, A. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review, D, 23, 347–356.

    Article  ADS  MATH  Google Scholar 

  53. Guth, A. (1984). The inflationary universe. Scientific American, 1, 34–60.

    Google Scholar 

  54. Guth, A. H. (1997). The inflationary universe: The quest for a new theory of cosmic origins. New York: Basic Books.

    Google Scholar 

  55. Guth, A., & Kaiser, D. I. (2005). Inflationary cosmology: Exploring the Universe from the smallest to the largest scales. Science, 307, 884–890.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, 199–220.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Hepp, K. (1966). Proof of the Bogoliubov-Parasiuk theorem of renormalization. Communications in Mathematical Physics, 2, 301–326.

    Article  ADS  MATH  Google Scholar 

  58. Higgs, P. W. (2014). Evading the Goldstone theorem. Reviews of Modern Physics, 86, 851–853.

    Article  ADS  Google Scholar 

  59. Hoyle, F., & Narlikar, J. V. (1964). On the avoidance of singularities in C-field cosmology. Proceedings of the Royal Society, A, 278, 465–478.

    ADS  MATH  Google Scholar 

  60. Hoyle, F. (1968). The nature of the universe. Gretna, Louisiana: Pelican. (Reprint ed.).

    Google Scholar 

  61. Hubble, R. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168–173.

    ADS  MATH  Google Scholar 

  62. Johnson, K. (1968). 9th Latin American School of Physics, Santiago de Chile. In K. Johnson & I. Saavedra (Eds.), Solid state physics, and particle physics. New York: W. A. Benjamin.

    Google Scholar 

  63. Johnson, K. (1996). Julian Schwinger - Personal recollections. In Y. Jack Ng (Ed.). Julian Scwhinger - The physicist, the teacher, and the man (p. 96). Singapore: World Scientific.

    Google Scholar 

  64. Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11, 237–238.

    ADS  MathSciNet  MATH  Google Scholar 

  65. Klein, M. J. (Ed.). (1959). Paul Ehrenfest: Collected scientific papers. Amsterdam: North-Holland.

    Google Scholar 

  66. Kopeikin, S. M., & Fomalont, E. B. (2007). Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments. General Relativity and Gravitation, 39, 1583–1624.

    ADS  MathSciNet  MATH  Google Scholar 

  67. Lam, C. S. (1965). Feynman rules and Feynman integrals for systems with higher-spin fields. Nuovo Cimento, 38, 1755–1765.

    Google Scholar 

  68. Lenard, A., & Dyson, F. J. (1968). Stability of matter. II, Journal of Mathematical Physics (NY) 9, 698–709.

    Google Scholar 

  69. Lieb, E. H., & Thirring, W. E. (1975). Bound for the kinetic energy of fermions which proves the stability of matter. Physical Review Letters, 35, 687–689, [Errata (1975), 35, 1116(E).]

    Google Scholar 

  70. Lieb, E. H. (1979). The \(N^{5/3}\) law for bosons. Physics Letters, 70A, 71–73.

    ADS  MathSciNet  Google Scholar 

  71. Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters, B, 108, 389–393.

    ADS  Google Scholar 

  72. Linde, A. D. (1985). Initial conditions for inflation. Physics Letters, B, 162, 281–286.

    ADS  Google Scholar 

  73. Lorentz, H. A., Einstein, A., Minkowski, H., Weyl, H., & Sommerfeld, A. (1952). The principle of relativity. New York: Dover Publication.

    MATH  Google Scholar 

  74. Lorentz, H. A., Einstein, A., Minkowski, H., Weyl, H., & Sommerfeld, A. (1953). The meaning of relativity (5th ed.). Princeton: Princeton University Press.

    Google Scholar 

  75. Manoukian, E. B. (1979). Subtractions vs counterterms. Nuovo Cimento, 53A, 345–358.

    ADS  MathSciNet  Google Scholar 

  76. Manoukian, E. B. (1983). Renormalization. New York: Academic.

    MATH  Google Scholar 

  77. Manoukian, E. B. (1986). Action principle and quantization of gauge fieds. Physical Review D, 34, 3739–3749.

    ADS  MathSciNet  Google Scholar 

  78. Manoukian, E. B., & Muthaporn, C. (2002). The collapse of “bosonic matter”. Progress of Theoretical Physics, 107, 927–939.

    Google Scholar 

  79. Manoukian, E. B., & Sirininlakul, S. (2004). Rigorous lower bounds for the ground state energy of matter, Physics Letters, 332, 54–59, [Errata (2004). 337A, 496(E).]

    Google Scholar 

  80. Manoukian, E. B., & Yongram, N. (2004). Speed dependent polarization correlations in QED and entanglement. European Physical Journal D, 31, 137–143.

    ADS  Google Scholar 

  81. Manoukian, E. B., & Sirininlakul,. (2005). High density limit and inflation of matter. Physical Review Letters, 95(190402), 1–3.

    Google Scholar 

  82. Manoukian, E. B. (2006). Quantum theory: A wide spectrum. Dordrecht: Springer.

    MATH  Google Scholar 

  83. Manoukian, E. B., Muthaporn, C., & Sirininlakul, S. (2006). Collapsing stage of “bosonic matter”. Physics Letters, 352A, 488–490.

    Google Scholar 

  84. Manoukian, E. B. (2012). All the fundamental massless bosonic fields in bosonic string theory. Fortschritte der Physik, 60, 329–336.

    ADS  MathSciNet  MATH  Google Scholar 

  85. Manoukian, E. B. (2012). All the fundamental bosonic massless fields in superstring theory. Fortschritte der Physik, 60, 337–344.

    ADS  MATH  Google Scholar 

  86. Manoukian, E. B. (2012). All the fundamental massless fermion fields in supersring theory: A rigorous analysis. Journal of Modern Physics, 3, 1027–1030.

    ADS  Google Scholar 

  87. Manoukian, E. B. (2016). Quantum field theory I: Foundations and abelian and non-abelian gauge theories. Switzerland: Springer.

    MATH  Google Scholar 

  88. Manoukian, E. B. (2016). Quantum field theory II: Introductions to quantum gravity, supersymmetry and string theory. Switzerland: Springer.

    MATH  Google Scholar 

  89. Manoukian, E. B. (2016). Do atomic electrons fall to the center of multi-electron atoms? Modern Physics Letters, B, 30, 1650082 [8 p.].

    Google Scholar 

  90. Martin, P. C., & Glashow, S. L. (2008). Julian Schwinger 1918–1994: A biographical memoir. National Academy of Sciences. Washington, DC, Copyright 2008, p. 16.

    Google Scholar 

  91. Mashoon, B., Hehl, F. W., & Theiss, D. S. (1984). On the gravitational effects of rotating masses: The Thirring-Lense papers. General Relativity and Gravitation, 16, 711–750.

    ADS  MathSciNet  Google Scholar 

  92. Mayall, N. U. (1970). Edwin Powell Hubble: A biographical memoir. National Academy of Siences. Washington, D.C.

    Google Scholar 

  93. McKellar, A. (1941). Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publications of the Dominion Astrophysical Observatory, Vancouver, B.C., Canada, 7, 251–272.

    Google Scholar 

  94. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1971). Gravitation. New York: W. H. Freeman and Company.

    Google Scholar 

  95. Mitchell, J. (1784). On the means of discovering the distance, magnitude, & c of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. Philosophical Transactions of the Royal Society, 74, 35–57.

    Google Scholar 

  96. Olive, K. A., et al. (2014). Particle data group. Chinese Physics C, 38, 090001.

    ADS  Google Scholar 

  97. Penrose, R. (1969). Gravitational collapse: The role of general relativity. Rivista del Nuovo Cimento, Numero Speziale, I, 252–276.

    ADS  Google Scholar 

  98. Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal Letters, 142, 419–421.

    ADS  Google Scholar 

  99. Perlmutter, S. (2012). Measuring the acceleration of the cosmic expansion using supernovae. Reviews of Modern Physics, 84, 1127–1149.

    ADS  Google Scholar 

  100. Politzer, H. D. (2005). The dilemma of attribution. Reviews of Modern Physics, 77, 851–856.

    ADS  MathSciNet  MATH  Google Scholar 

  101. Pugh, G. E. (1959). Proposal for a satellite test of the Coriolis prediction of general relativity. WSEG Research Memorandum No. 11, Weapons System Evaluation Group. The Pentagon, Washington, D.C. 25 (12 November 1959).

    Google Scholar 

  102. Ragulsky, V. V. (1997). Determination of light velocity dependence on direction of propagation. Physics Letters A, 235, 125–128.

    ADS  Google Scholar 

  103. Ri, J.-G., et al. (2017). Ground-to-satellite quantum teleportation. Nature, 549, 70–73.

    ADS  Google Scholar 

  104. Riess, A. G. (2012). My path to the accelerating universe. Reviews of Modern Physics, 84, 1165–1175.

    ADS  Google Scholar 

  105. Robertson, H. P. (1935). Kinematics and world structure. Astrophysical Journal, 82, 284–301.

    ADS  MATH  Google Scholar 

  106. Robertson, H. P. (1936). Kinematics and world structure II. Astrophysical Journal, 83, 187–201.

    ADS  MATH  Google Scholar 

  107. Robertson, H. P. (1936). Kinematics and world structure III. Astrophysical Journal, 83, 257–271.

    ADS  MATH  Google Scholar 

  108. Roelofs, F., et al. (2019). Simulations of imaging the event horizon of Sagittarius \(\text{A}^*\)  from space. Astronomy & Astrophysics, 625, A124 (19 p.).

    Google Scholar 

  109. Ruffini, R. J., & Sigismondi, B. C. (2003). Non-linear gravitodynamics: The Lense-Thirring effect (pp. 349–388). Singapore: World Scientific.

    MATH  Google Scholar 

  110. Salam, A. (1951). Divergent integrals in renormalizable field theories. Physical Review, 84, 426–431.

    ADS  MathSciNet  MATH  Google Scholar 

  111. Salam, A. (1951). Overlapping divergences and the S-matrix. Physical Review, 82, 217–227.

    ADS  MathSciNet  MATH  Google Scholar 

  112. Salam, A. (1980). Grand unification and fundamental forces. Reviews of Modern Physics, 52, 353–355.

    ADS  Google Scholar 

  113. Schaefer, B. E. (1999). Severe limits on variations of the speed of light with frequency. Physical Review Letters, 82, 4964–4966.

    ADS  Google Scholar 

  114. Schiff, L. I. (1960). Possible new experimental test of general relativity theory. Physical Review Letters, 4, 215–218.

    ADS  Google Scholar 

  115. Schiff, L. I. (1960). Motion of a gyroscope according to Einstein’s theory of gravitation. Proceedings of the National Academy of Sciences, 46, 871–882.

    ADS  MathSciNet  MATH  Google Scholar 

  116. Schmidt, B. P. (2012). Acceleration expansion of the Universe through observations of distant supernovae. Reviews of Modern Physics, 84, 1151–1163.

    ADS  Google Scholar 

  117. Schrödinger, E. (1935). The present situation in quantum mechanics. Naturwissenschaften, 23, 807–812, (English translation: Trimmer, J. D. (1980) Proceedings of the American Philosophical Society, 124, 323–338.)

    Google Scholar 

  118. Schwarzschild, K. (1916). Über das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, Berlin Kl, 189–196.

    Google Scholar 

  119. Schwarzschild, K. (1916). Über das gravitationsfeld einer kugel aus inkompressibler flüssigkeit nach der Einsteinschen theorie. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, Berlin Kl, 424–434.

    Google Scholar 

  120. Schwinger, J. (1951). On the Green’s functions of quantized fields. I. Proceedings of the National Academy of Sciences, USA, 37, 452–455; (1953).

    Google Scholar 

  121. Schwinger, J. (1957). A theory of fundamental interactions. Annals of Physics (NY), 2, 407–434.

    ADS  MathSciNet  MATH  Google Scholar 

  122. Schwinger, J. (1953). The theory of quantized fields. II, III. Physical Review, 91, 713–728, 728–740.

    Google Scholar 

  123. Schwinger, J. (Ed.). (1958). Selected papers on quantum electrodynamics. New York: Dover.

    MATH  Google Scholar 

  124. Schwinger, J. (1960). Unitary transformations and the action principle. Proceedings of the National Academy of Sciences, USA, 46, 883–897.

    ADS  MathSciNet  MATH  Google Scholar 

  125. Schwinger, J. (1962). Exterior algebra and the action principle I. Proceedings of the National Academy of Sciences, USA, 58, 603–611.

    ADS  MATH  Google Scholar 

  126. Schwinger, J. (1972). Relativisic quantum electrodynamics. In Nobel Lectures, Physics 1963–1970, 11 Dec 1965. Amsterdam: Elsevier.

    Google Scholar 

  127. Schwinger, J. (1973). A report on quantum electrodynamics. In L. Mehra (Ed.), The physicit’s conception of nature. Dordrecht-Holland: D. Reidel Publishing Company.

    Google Scholar 

  128. Schwinger, J. (1991). Quantum kinematics and dynamics. Redwood City: Addison-Wesley.

    MATH  Google Scholar 

  129. Schwinger, J. (2001). Quantum mechanics: Symbolism of atomic measurements. Berlin: Springer.

    MATH  Google Scholar 

  130. Sen, P. (2007). You can’t see the atom. Published by BBC News: 23 July, 2007, News Front Page. UK.

    Google Scholar 

  131. Shapiro, I. I. (1964). Fourth test of general relativity. Physical Review Letters, 13, 789–791.

    Article  ADS  MathSciNet  Google Scholar 

  132. Shapiro, I. I., et al. (1971). Fourth test of general relativity: New radar result. Physical Review Letters, 26, 1132–1135.

    Article  ADS  Google Scholar 

  133. Siegfried, T. (2013). 50 years later, it’s hard to say who named black holes. Science News for December 23, 2013, issue.

    Google Scholar 

  134. Shaw, R. (1955). The problem of particle types and other contributions to the theory of elementary particles. Ph.D. thesis, Cambridge University.

    Google Scholar 

  135. Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91, 99–102.

    Article  ADS  MATH  Google Scholar 

  136. Starobinsky, A. A. (1982). Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Physics Letters B, 117, 175–178.

    Article  ADS  Google Scholar 

  137. Streater, R. F. (1985). Review of renormalization by E. B. Manoukian. Bulletin of London Mathematical Society, 17, 509–510.

    Article  Google Scholar 

  138. Tanabashi, M., et al. (2018). Particle data group. Physical Review D, 98, 010001.

    Article  Google Scholar 

  139. Thirring, H., & Lense, J. (1918). Über die wirking rotierender ferner massen in der Einsteinschen gravitationstheorie. Physikalische Zeitschrift, 19, 156–163.

    ADS  MATH  Google Scholar 

  140. \({}^{\prime }\)t Hooft, G., (2000). A confrontation with infinity. Reviews of Modern Physics, 72, 333–339.

    Google Scholar 

  141. Titov, O. A., & Girdiuk, A. A. (2015). The deflection of light induced by the Sun’s gravitational field and measured with geodesics VLBI. Proceedings of the Journées 2014 Meeting, Z. Malkin and N. Capitaine (Eds.), Pulkovo Observatory, St. Petersburg, Russia.

    Google Scholar 

  142. Tomonaga, S. (1972). Development of quantum electrodynamics: Personal recollection. In Nobel Lectures, Physics 1963–1970, 6 May 1966. Amsterdam: Elsevier.

    Google Scholar 

  143. Tomonaga, S., & (Translator T. Oka). (1997). The story of spin. Chicago: University of Chicago Press.

    Google Scholar 

  144. Turyshev, S. G. (2008). Experimental tests of general relativity: Recent progress and future directions. Annual Review of Nuclear Science, 58, 207–248.

    ADS  Google Scholar 

  145. Vanyashin, V. S., & Terentyev, M. V. (1965). The vacuum polarization of a charged vector field. Soviet Physics JETP, 21, 375–380. (Original Russian version appeared in Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 48, 565–569 (1965).)

    Google Scholar 

  146. Veltman, M. J. G. (2000). From weak interactions to gravitation. Reviews of Modern Physics, 72, 341–349.

    ADS  MathSciNet  MATH  Google Scholar 

  147. Waddoups, R. O., Edwards, W. F., & Merrill, J. J. (1965). Experimental investigation of the second postulate of special relativity. Journal of the Optical Society of America, 55, 142–143.

    ADS  Google Scholar 

  148. Walker, A. G. (1937). On Milne’s theory of world-structure. Proceedings of the London Mathematical Society, Series, 2(42), 90–127.

    MATH  Google Scholar 

  149. Weinberg, S. (1980). Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics, 52, 515–523.

    ADS  MathSciNet  MATH  Google Scholar 

  150. Weinberg, S. (1996). The quantum theory of fields II: Modern Applications. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  151. Weisskopf, V. F., & (1979). Personal impressions of recent results in particle physics. CERN Ref. Th 2732, on page 7, 11th line from below. In “Growing up with field theory, and recent trends in particle physics”. The 1979 Bernard Gregory lectures at CERN (29 p.). Geneva: CERN.

    Google Scholar 

  152. Weisskopf, V. F. (1980). Growing up with field theory, and recent trends in particle physics. “The 1979 Bernard Gregory lectures at CERN” (29 p.). Geneva: CERN.

    Google Scholar 

  153. Wilczek, F. (2005). Asymptotic freedom: From paradox to paradigm. Reviews of Modern Physics, 77, 857–870.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. Will, C. M. (2014). The confrontation between general relativity and experiment. Living Reviews in Relativity, 17, 4–117.

    Article  ADS  MATH  Google Scholar 

  155. Yang, C. N., & Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191–195.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. Yongram, N., & Manoukian, E. B. (2013). Quantum field theory analysis of polarization correlations, entanglement and Bell’s inequality: Explicit processes. Fortschritte der Physik, 61, 668–684.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. Zeidler, E. (2009). Quantum field theory II: Quantum electrodynamics (pp. 972–975). Berlin: Springer.

    Google Scholar 

  158. Zimmermann, W. (1969). Convergence of Bogoliubov’s method of renormalization in momentum space. Communications in Mathematical Physics, 15, 208–234.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44, 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Manoukian .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manoukian, E.B. (2020). Introduction—An Overview and a Road Map. In: 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand. Springer, Cham. https://doi.org/10.1007/978-3-030-51081-7_1

Download citation

Publish with us

Policies and ethics