Skip to main content

A Review on Applications of Soft Computing Techniques in Neuroergonomics During the Last Decade

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1201))

Included in the following conference series:

  • 1183 Accesses

Abstract

Soft computing (SC) methods play an important role in addressing the different types of problems and offering potential alternatives at the present time. Such methods have also been implemented in the context of neuroergonomics, because of the success of SC strategies, to reliably evaluate the mental workload and achieve better results than traditional approaches. Nevertheless, these applications are still limited. This paper surveys SC techniques using classification and literature review of articles for the last decade (2009–2019) to explore how various SC methodologies have been developed during this period. The purpose of this paper is to summarize the results through a systemic review of current research papers on the use of SC methodologies in neuroergonomics. Throughout the course of this study, it has been observed that SC techniques have been applied to most traditional areas of neuroergonomics research, and research in neuroergonomics has grown in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parasuraman, R., Rizzo, M. (eds.): Neuroergonomics: The Brain at Work, vol. 3. Oxford University Press, New York (2008)

    Google Scholar 

  2. Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. Wiley, New York (1997)

    MATH  Google Scholar 

  3. Parasuraman, R., Hancock, P.A.: Adaptive control of mental workload. In: Hancock, P.A., Desmond, P.A. (eds.) Stress, Workload, and Fatigue, pp. 305–333. Lawrence Erlbau, Mahwah (2001)

    Google Scholar 

  4. Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and Everyday Life, 1st edn. Elsevier, Academic Press, Cambridge (2019)

    Google Scholar 

  5. Kum, S., Furusho, M., Duru, O., Satir, T.: Mental workload of the VTS operators by utilising heart rate. Trans. Nav. 1(2), 145–151 (2007)

    Google Scholar 

  6. Nachreiner, F.: Standards for ergonomics principles relating to the design of work systems and to mental workload. Appl. Ergon. 26(4), 259–263 (1995)

    Article  Google Scholar 

  7. Moray, N.: Mental workload since 1979. Int. Rev. Ergon. 2, 123–150 (1988)

    Google Scholar 

  8. Liang, G.F., Lin, J.T., Hwang, S.L., Huang, F.H., Yenn, T.C., Hsu, C.C.: Evaluation and prediction of on-line maintenance workload in nuclear power plant. Hum. Fact. Ergon. Manuf. 19(1), 64–77 (2009)

    Article  Google Scholar 

  9. Wu, Y., Liu, Z., Jia, M., Tran, C.C., Yan, S.: Using artificial neural networks for predicting mental workload in nuclear power plants based on eye tracking. Nucl. Technol. 206(1), 94–106 (2020)

    Article  Google Scholar 

  10. Yan, S., Wei, Y., Tran, C.C.: Evaluation and prediction mental workload in user interface of maritime operations using eye response. Int. J. Ind. Ergon. 71, 117–127 (2019)

    Article  Google Scholar 

  11. Yan, S., Tran, C.C., Wei, Y., Habiyaremye, J.L.: Driver’s mental workload prediction model based on physiological indices. Int. J. occup. Saf. Ergon. 25(3), 476–484 (2019)

    Article  Google Scholar 

  12. Chen, Y., Yan, S., Tran, C.C.: Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload. Nucl. Eng. Technol. 51(2), 453–462 (2019)

    Article  Google Scholar 

  13. Yong, D.: Subjective mental workload assessment based on generalized fuzzy numbers. Cybern. Syst. Int. J. 42(4), 246–263 (2011)

    Article  MathSciNet  Google Scholar 

  14. Saadati, M., Nelson, J., Ayaz, H.: Mental workload classification from spatial representation of FNIRS recordings using convolutional neural networks. In: 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  15. Saadati, M., Nelson, J., Ayaz, H.: Convolutional neural network for hybrid fNIRS-EEG mental workload classification. In: International Conference on Applied Human Factors and Ergonomics, pp. 221–232. Springer, Cham (2019)

    Google Scholar 

  16. Liu, Y., Ayaz, H., Shewokis, P.A.: Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Frontiers Hum. Neurosci. 11, 389 (2017)

    Article  Google Scholar 

  17. Elkin, C., Devabhaktuni, V.: Comparative analysis of machine learning techniques in assessing cognitive workload. In: International Conference on Applied Human Factors and Ergonomics, pp. 185–195. Springer, Cham (2019)

    Google Scholar 

  18. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)

  19. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  20. Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 5(1), 011008 (2017)

    Article  Google Scholar 

  21. Hong, K.S., Naseer, N., Kim, Y.H.: Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci. Lett. 587, 87–92 (2015)

    Article  Google Scholar 

  22. Samima, S., Sarma, M.: EEG-based mental workload estimation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5605–5608. IEEE (2019)

    Google Scholar 

  23. Zhang, P., Wang, X., Chen, J., You, W., Zhang, W.: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1149–1159 (2019)

    Article  Google Scholar 

  24. Zhang, Y., Shen, Y.: Parallel mechanism of spectral feature-enhanced maps in EEG-based cognitive workload classification. Sensors 19(4), 808 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zhang, P., Wang, X., Zhang, W., Chen, J.: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(1), 31–42 (2018)

    Article  Google Scholar 

  26. Islam, M.R., Barua, S., Ahmed, M.U., Begum, S., Di Flumeri, G.: Deep learning for automatic EEG feature extraction: an application in drivers’ mental workload classification. In: International Symposium on Human Mental Workload: Models and Applications, pp. 121–135. Springer, Cham (2019)

    Google Scholar 

  27. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG + fNIRS. Frontiers Hum. Neurosci. 11, 359 (2017)

    Article  Google Scholar 

  28. Lee, M.H., Fazli, S., Mehnert, J., Lee, S.W.: Hybrid brain-computer interface based on EEG and NIRS modalities. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI), pp. 1–2. IEEE (2014)

    Google Scholar 

  29. Gu, H., Yin, Z., Zhang, J.: EEG based mental workload assessment via a hybrid classifier of extreme learning machine and support vector machine. In: 2019 Chinese Control Conference (CCC), pp. 8398–8403. IEEE (2019)

    Google Scholar 

  30. Ting, P.H., Hwang, J.R., Doong, J.L., Jeng, M.C.: Driver fatigue and highway driving: a simulator study. Physiol. Behav. 94(3), 448–453 (2018)

    Article  Google Scholar 

  31. Liu, Y.T., Lin, Y.Y., Wu, S.L., Hsieh, T.Y., Lin, C.T.: Assessment of mental fatigue: an EEG-based forecasting system for driving safety. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3233–3238. IEEE (2015)

    Google Scholar 

  32. Ed-doughmi, Y., Idrissi, N.: Driver fatigue detection using recurrent neural networks. In: Proceedings of the 2nd International Conference on Networking, Information Systems & Security, pp. 1–6 (2019)

    Google Scholar 

  33. Chai, R., Tran, Y., Craig, A., Ling, S.H., Nguyen, H.T.: Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1341. IEEE (2014)

    Google Scholar 

  34. Warm, J.S.: The psychophysics of vigilance. In: Proceedings of the Human Factors Society Annual Meeting, vol. 24, no. 1, p. 605. SAGE Publications, Los Angeles (1980)

    Google Scholar 

  35. Wu, W., Wu, Q.J., Sun, W., Yang, Y., Yuan, X., Zheng, W.L., Lu, B.L.: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG. IEEE Trans. Cogn. Dev. Syst. (2018)

    Google Scholar 

  36. Rigane, O., Abbes, K., Abdelmoula, C., Masmoudi, M.: A fuzzy based method for driver drowsiness detection. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 143–147. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erman Çakıt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çakıt, E., Karwowski, W. (2021). A Review on Applications of Soft Computing Techniques in Neuroergonomics During the Last Decade. In: Ayaz, H., Asgher, U. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-51041-1_6

Download citation

Publish with us

Policies and ethics