Skip to main content

Alternatives to Synthetic Fungicides Using Small Molecules of Natural Origin

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 22))

  • 687 Accesses

Abstract

Small molecules of natural origin have been reported to act as alternatives to synthetic fungicides. These are reviewed in this chapter, and some ideas of new development are given.

The list, which is not exhaustive, is the following: acetaldehyde, acetic acid, aldehydes (other than acetaldehyde), aminobutyric acids, ascorbic acid, ethanol, ethylene, jasmonic acid and methyl jasmonate, salicylic acid and methyl salicylate, salts (e.g. sodium bicarbonate, calcium chloride, copper sulphate), sorbic acid and sulphur. There is also discussion about the potential of combinations (e.g. additive or synergistic effects).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson A, Savary SS, Willocquet L, Esker P, Pethybridge SJ, McRoberts N (2018) Assessment of crop health and losses to plant diseases in world agricultural foci. Phytophatology 108:S1–S36

    Google Scholar 

  2. Nigro F, Schena L, Ligorio A, Pentimone I, Ippolito A, Salerno MG (2006) Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biol Technol 42:142–149

    Article  CAS  Google Scholar 

  3. Dry IB, Feechan A, Anderson C, Jermakow AM, Bouquet A, Adam-Blondon A-F, Thomas MR (2010) Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust J Grape Wine Res 16:94–105

    Article  CAS  Google Scholar 

  4. Borges AA, Sandalio LM (2015) Induced resistance for plant defense. Front Plant Sci 6:109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pesis E (2005) The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol Technol 37:1–19

    Article  CAS  Google Scholar 

  6. Kim L, Galbally IE, Porter N, Weeks IA, Lawson SJ (2011) BVOC emissions from mechanical wounding of leaves and branches of Eucalyptus sideroxylon (red ironbark). J Atmos Chem 68:265–279

    Article  CAS  Google Scholar 

  7. Utama IMS, Wills RBH, Ben-Ye-Hoshua S, Kuek C (2002) In vitro efficacy of plant volatiles for inhibiting the growthof fruit and vegetable decay microorganisms. J Agric Food Chem 50:6371–6377

    Article  CAS  PubMed  Google Scholar 

  8. Pesis E, Frenkel C (1989) Effects of acetaldehyde vapors on postharvest quality of table grapes. HortScience 24:315–317

    CAS  Google Scholar 

  9. Avissar I, Pesis E (1991) The control of postharvest decay in table grapes using acetaldehyde vapours. Ann Appl Biol 118:229–237

    Article  CAS  Google Scholar 

  10. Chervin C, Truett JK, Speirs J (1999) Alcohol dehydrogenase expression and alcohol production during pear ripening. J Amer Soc Hort Sci 124:71–75

    Article  CAS  Google Scholar 

  11. Miyake T, Shibamoto T (1995) Formation of acetaldehyde from L-ascorbic acid and related compounds in various oxidation systems. J Agric Food Chem 43:1669–1672

    Article  CAS  Google Scholar 

  12. Tadege M, Bucher M, Stahli W, Suter M, Dupuis I, Kuhlemeier C (1998) Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant J 16:661–671

    Article  CAS  Google Scholar 

  13. Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245

    Article  Google Scholar 

  14. Venditti T, Ladu G, Cubaiu L, Myronycheva O, d’Hallewin G (2017) Repeated treatments with acetic acid vapors during storage preserve table grapes fruit quality. Postharvest Biol Technol 125:91–98

    Article  CAS  Google Scholar 

  15. Camili EC, Benato EA, Pascholati SF, Cia P (2010) Fumigation of ‘Italia’ grape with acetic acid for postharvest control of Botrytis cinerea. Rev Bras Frut 32:436–443

    Article  Google Scholar 

  16. Gravel V, Antoun H, Tweddell RJ (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462

    Article  CAS  Google Scholar 

  17. Martin H, Maris P (2004) An assessment of the bactericidal and fungicidal efficacy of seventeen mineral and organic acids on bacterial and fungal food industry contaminants. Sci Alim 25:105–127

    Article  Google Scholar 

  18. Song J, Hildebrand PD, Fan LH, Forney CF, Renderos WE, Campbell-Palmer L, Doucette C (2007) Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. J Food Sci 72:M108–M112

    Article  CAS  PubMed  Google Scholar 

  19. Wakai J, Kusama S, Nakajima K, Kawai S, Okumura Y, Shiojiri K (2019) Effects of trans-2-hexenal and cis-3-exenal on post-harvest strawberry. Sci Rep 9:10112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69:2127–2132

    Article  CAS  PubMed  Google Scholar 

  21. Smid EJ, Hendriks L, Boerrigter HAM, Gorris LGM (1996) Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde. Postharvest Biol Technol 9:343–350

    Article  CAS  Google Scholar 

  22. Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28:149–157

    Article  PubMed  Google Scholar 

  23. Thevenet D, Pastor V, Baccelli I, Balmer A, Vallat A, Neier R et al (2017) The priming molecule beta-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol 213:552–559

    Article  CAS  PubMed  Google Scholar 

  24. Baccelli I, Mauch-Mani B (2016) Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Mol Biol 91:703–711

    Article  CAS  PubMed  Google Scholar 

  25. Luna E, van Hulten M, Zhang YH, Berkowitz O, Lopez A, Petriacq P et al (2014) Plant perception of beta-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat Chem Biol 6:450–456

    Article  CAS  Google Scholar 

  26. Wang GP, Kong J, Cui DD, Zhao HB, Niu Y, Xu MY et al (2019) Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the gamma-aminobutyric acid metabolic pathway. Plant J 97:1032–1047

    Article  CAS  PubMed  Google Scholar 

  27. Alós E, Rodrigo MJ, Zacarías L (2014) Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta 239:1113–1128

    Article  PubMed  CAS  Google Scholar 

  28. Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC (2010) Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. J Plant Physiol 167:739–748

    Article  CAS  PubMed  Google Scholar 

  29. Van der Wolf JM, Birnbaum Y, Van der Zouwen PS, Groot SPC (2008) Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci Technol 36:76–88

    Article  Google Scholar 

  30. Khalil OA, de Faria Oliveira O, RebuglioVellosa JC, Urbade Quadros A, Dalposso LM, Karam TK et al (2012) Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chem 133:1001–1005

    Article  CAS  Google Scholar 

  31. Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344

    Article  CAS  PubMed  Google Scholar 

  32. Hann CT, Bequette CJ, Dombrowski JE, Stratmann JW (2014) Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns. Front Plant Sci 5:550

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beaulieu JC, Saltveit ME (1997) Inhibition or promotion of tomato fruit ripening by acetaldehyde and ethanol is concentration dependent and varies with initial fruit maturity. J Amer SocHort Sci 122:392–398

    CAS  Google Scholar 

  34. El Kereamy A, Chervin C, Souquet JM, Moutounet M, Monje MC, Nepveu F, Mondies H, Ford CM, van Heeswijck R, Roustan JP (2002) Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Sci 163:449–454

    Article  Google Scholar 

  35. Chervin C, Elkereamy A, Roustan JP, Faragher JD, Latche A, Pech JC, Bouzayen M (2001) An ethanol spray at veraison enhances colour in red wines. Aust J Grape Wine Res 7:144–145

    Article  Google Scholar 

  36. Chervin C, Savocchia S, Krstic M, Serrano E, van Heeswijck R (2005) Enhancement of grape berry weight induced by an ethanol spray four weeks before harvest and effects of a night spray at an earlier date. Aust J Exp Agric 45:731–734

    Article  CAS  Google Scholar 

  37. Lichter A, Zutkhy Y, Sonego L, Dvir O, Kaplunov T, Sarig P, Ben-Arie R (2002) Ethanol controls postharvest decay of table grapes. Postharvest Biol Technol 24:301–308

    Article  CAS  Google Scholar 

  38. Karabulut OA, Gabler FM, Mansour M, Smilanick JL (2004) Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biol Technol 34:169–177

    Article  CAS  Google Scholar 

  39. Chervin C, Westercamp P, Monteils G (2005) Ethanol vapours limit Botrytis development over the postharvest life of table grapes. Postharvest Biol Technol 36:319–322

    Article  CAS  Google Scholar 

  40. Suzuki Y, Uji T, Terai H (2004) Inhibition of senescence in broccoli florets with ethanol vapor from alcohol powder. Postharvest Biol Technol 31:177–182

    Article  CAS  Google Scholar 

  41. Chervin C, Bouzambou N, Latche A, Pech JC (2005c) Potential for ethanol vapours to limit table grape berry shatter and to limit ethylene evolution from clusters. ActaHortic 682:513–518

    Article  Google Scholar 

  42. Chervin C, Lavigne D, Westercamp P (2009) Reduction of gray mold development in table grapes by preharvest sprays with ethanol and calcium chloride. Postharvest Biol Technol 54:115–117

    Article  CAS  Google Scholar 

  43. Karabulut OA, Smilanick JL, MlikotaGabler F, Mansour M, Droby S (2003) Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in Central California. Plant Dis 87:1384–1389

    Article  CAS  PubMed  Google Scholar 

  44. Lichter A, Zhou HW, Vaknin M, Dvir O, Zutchi Y, Kaplunov T, Lurie S (2003) Survival and responses of Botrytis cinerea after exposure to ethanol and heat. J Phytopathol 151:553–563

    Article  CAS  Google Scholar 

  45. Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  46. Ju C, Chang C (2015) Mechanistic insights in ethylene perception and signal transduction. Plant Physiol 169:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Broekgaarden C, Caarls L, Vos IA, Pieterse CMJ, Van Wees SCM (2015) Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiol 169:2371–2379

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2008a) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787

    Article  CAS  PubMed  Google Scholar 

  49. Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP (2008) Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts over the ripening phase. Physiol Plant 134:534–546

    Article  CAS  PubMed  Google Scholar 

  50. Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Ann Rev Plant Biol 69:387–415

    Article  CAS  Google Scholar 

  51. Kondo S, Fukuda K (2001) Changes of jasmonates in grape berries and their possible roles in fruit development. Sci Hort 91:275–288

    Article  CAS  Google Scholar 

  52. Glowacz M, Roets N, Sivakumar D (2017) Control of anthracnose disease via increased activity of defence related enzymes in ‘Hass’ avocado fruit treated with methyl jasmonate and methyl salicylate. Food Chem 234:163–167

    Article  CAS  PubMed  Google Scholar 

  53. Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54:9119–9125

    Article  CAS  PubMed  Google Scholar 

  54. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Ann Rev Plant Biol 64:839–863

    Article  CAS  Google Scholar 

  55. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318(5847):113–116

    Article  CAS  PubMed  Google Scholar 

  56. Babalar M, Asghari M, Talaei A, Khosroshahi A (2007) Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Postharvest Biol Technol 105:449–453

    CAS  Google Scholar 

  57. Gimenez MJ, Valverde JM, Valero D, Zapata PJ, Castillo S, Serrano M (2016) Postharvest methyl salicylate treatments delay ripening and maintain quality attributes and antioxidant compounds of ‘Early Lory’ sweet cherry. Postharvest Biol Technol 117:102–109

    Article  CAS  Google Scholar 

  58. Coelho J, Almeida-Trapp M, Pimentel D, Soares F, Reis P, Rego C et al (2019) The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Plant Sci 283:266–277

    Article  CAS  PubMed  Google Scholar 

  59. James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    Article  CAS  PubMed  Google Scholar 

  60. Palou L (2018) Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae 4:46

    Article  Google Scholar 

  61. Lecourieux D, Raneva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    Article  CAS  PubMed  Google Scholar 

  62. Karabulut OA, Romanazzi G, Smilanick JL, Lichter A (2005) Postharvest ethanol and potassium sorbate treatments of table grapes to control gray mold. Postharvest Biol Technol 37:129–134

    Article  CAS  Google Scholar 

  63. Feliziani E, Smilanick JL, Margosan DA, Mansour MF, Romanazzi G, Gu S et al (2013) Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes. Plant Dis 97:307–314

    Article  CAS  PubMed  Google Scholar 

  64. Crisp P, Wicks TJ, Lorimer M, Scott ES (2006) Novel controls for powdery mildew – greenhouse studies. Aust J Grape Wine Res 12:192–202&203–211

    Google Scholar 

  65. Kolaei EA, Tweddell RJ, Avis TJ (2012) Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot. Postharvest Biol Technol 63:55–59

    Article  CAS  Google Scholar 

  66. Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Merillon JM (2008b) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    Article  CAS  PubMed  Google Scholar 

  67. Spadaro D, Garibaldi A, Gullino ML (2004) Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda or ethanol application. Postharvest Biol Technol 33:141–151

    Article  CAS  Google Scholar 

  68. Wang KT, Jin P, Shang HT, Zheng YH (2010) Effect of methyl Jasmonate in combination with ethanol treatment on postharvest decay and antioxidant capacity in Chinese bayberries. J Agric Food Chem 58:9597–9604

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Chervin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chervin, C. (2020). Alternatives to Synthetic Fungicides Using Small Molecules of Natural Origin. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-51034-3_7

Download citation

Publish with us

Policies and ethics