Skip to main content

The Fungal Genus Chaetomium and Its Agricultural Applications

Part of the book series: Progress in Biological Control ((PIBC,volume 22))

Abstract

Chaetomium is a ubiquitous genus well known by its properties for agriculture application. In this review, biology and taxonomy mainly of its principal and more studied species group, C. globosum, is presented. Besides, the use of this fungus as plant growth promoter and biocontrol agent through bioformulations, secondary metabolites and enzymes is mentioned. Finally, this review deals with the researches and current status in Argentina.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   186.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   186.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Corda ACJ (1840) Icones fungorum hucusque cognitorum, vol 4. Apud J.G.Calve, Pragae

    Google Scholar 

  2. Zopf W (1881) Zur Entwicklungsgeschichte der Ascomyceten: Chaetomium. Nova Acta der Kaiserlich Leopoldinisch-Carolinisch Deutschen Akademie der Naturforscher 42:199–292

    Google Scholar 

  3. Chivers AH (1915) A monograph of the genera Chaetomium and Ascotricha. Mem Torrey Bot Club 14:155–240

    Google Scholar 

  4. Skolko AJ, Groves JW (1948) Notes on seed-borne fungi V. Chaetomium species with dichotomously branched hairs. Can J Res 26:269–280

    Article  Google Scholar 

  5. Sörgel G (1960) Zum problem der trennung von arten bei pilzen, dargestellt am beispiel der ascomycetengattung Chaetomium. Arch Microbiol 36:51–66

    Google Scholar 

  6. Ames LM (1963) A monograph of the Chaetomiaceae. US Army Res Dev Ser 2:1–65

    Google Scholar 

  7. Mazzucchetti G (1965) Microfungi della cellulosa eddla carta attivita’se inquadramento sistematico – Il genere “Chaetomium”. Pubblicazioni Dell’ ente nazionale Per La Cellulosa e Per La Carta, Roma

    Google Scholar 

  8. Seth HK (1970) A monograph of the genus Chaetomium. Beiheftezur Nova Hedwigia 37:1–133

    Google Scholar 

  9. Dreyfuss M (1976) Taxonomische Untersuchungen innerhalb der Gattung Chaetomium. Sydowia 28:50–133

    Google Scholar 

  10. Millner PD, Motta JJ, Lentz PL (1977) Ascospores, germ pores, ultrastructure, and thermophilism of Chaetomium. Mycologia 69:720–733

    Article  Google Scholar 

  11. von Arx JA, Dreyfuss M, Müller E (1984) A reevaluation of Chaetomium and Chaetomiaceae. Persoonia 12:169–179

    Google Scholar 

  12. Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016b) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224. https://doi.org/10.1016/j.simyco.2016.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domsch KH, Gams W, Andreson TH (2007) Compendium of soil fungi.. vols 1 y 2. Academic, London

    Google Scholar 

  14. Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180–4188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larran S, Simon MR, Moreno MV, Siurana MS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  16. Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R (2012) Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J Antibiot 65:413–417

    Article  CAS  Google Scholar 

  17. McMullin DR, Sumarah MW, Miller JD (2013) Chaetoglobosins and azaphilones produced by Canadian strains of Chaetomium globosum isolated from the indoor environment. Mycotoxin Res 29:47–54

    Article  CAS  PubMed  Google Scholar 

  18. Shanthiyaa V, Saravanakumar D, Rajendran L, Karthikeyan G, Prabakar K, Raguchander T (2013) Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Prot 52:33–38

    Article  Google Scholar 

  19. Mahmoud FM, Yekkour A, Boudffeur S, Errahmani MB, Krimi Z (2016) Root endophytic fungi from date palm (Phoenix dactylifera L.) grove of Algerian Sahara and screening of their growth promotion activities. Adv Environ Biol 10(11):18–27

    CAS  Google Scholar 

  20. Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev Med Chem 12(2):127–148

    Article  PubMed  Google Scholar 

  21. Singh RK, Tiwari MK, Kim D, Kang YC, Ramachandran P, Lee JK (2013) Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass. Appl Microbiol Biot 97(16):7205–7214

    Article  CAS  Google Scholar 

  22. Kuncze G, Schmidt JK (1817) Mykologische Hefte: 1. Leipzig, Germany

    Google Scholar 

  23. von Arx JA, Guarro J, Figueras MJ (1986) The ascomycete genus Chaetomium. Beihefte zur Nova Hedwigia 84:1–162

    Google Scholar 

  24. Asgari B, Zare R (2011) The genus Chaetomium in Iran, a phylogenetic study including six new species. Mycologia 103:863–882

    Article  PubMed  Google Scholar 

  25. Wang XW, Lombard L, Groenewald JZ, Li J, Videira SIR, Samson RA, Liu XZ, Crous PW (2016a) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133

    Article  CAS  PubMed  Google Scholar 

  26. Monfil VO, Casas-Flores S (2014) Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. In: Biotechnology and biology of Trichoderma. Elsevier, pp 429–453

    Google Scholar 

  27. Yue HM, Wang M, Gong WF, Zhang LQ (2018) The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbial Lett 365(22):fny242

    CAS  Google Scholar 

  28. Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  29. Biswas SK, Aggarwal R, Srivastava KD, Sangeeta G, Prem D (2012) Characterization of antifungal metabolites of Chaetomium globosum Kunze and their antagonism against fungal plant pathogens. JBC 26(1):70–74

    Google Scholar 

  30. Zhou W, Starr JL, Krumm JL, Sword GA (2016) The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw158

  31. Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas Plant Path 35(4):411–418

    Article  Google Scholar 

  32. Mandal S, Srivastava KD, Aggarwal R, Singh DV (1999) Mycoparasitic action of some fungi on spot blotch pathogen (Drechslera sorokiniana) of wheat. Indian Phytopath 52(1):39–43

    Google Scholar 

  33. Gurukar S, Niranjana SR, Umesha S, Kumar LP, Shetty HS (2003) Effect of seed pelleting and soil amendment of biocontrol agents on the incidence of charcoal rot and yield of soybean. Asian J Microbiol Biotechnol Environ Sci 5(1):123–130

    Google Scholar 

  34. Dhingra OD, Mizubuti ESG, Santana FM (2003) Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil-surface soybean stubble in field conditions. Biol Control 26(3):302–310

    Article  Google Scholar 

  35. Vannacci G, Harman GE (1987) Biocontrol of seed-borne Alternaria raphani and A. brassicicola. Can J Microbiol 33:850–856

    Article  Google Scholar 

  36. Di Pietro A, Küng R, Gut-Rella M, Schwinn F (1991) Parameters influencing the efficacy of Chaetomium globosum in controlling Pythium ultimum damping-off of sugar beet / Einflußverschiedener Parameter auf die Wirksamkeit von Chaetomium globosum bei der Bekämpfung von Pythium ultimumals Erreger der Auflaufkrankheit der Zuckerrübe. Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz/J Plant Dis Protect 98(6):565–573. Retrieved from http://www.jstor.org/stable/43386776

    Google Scholar 

  37. Yan XN, Sikora RA, Zheng JW (2011) Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J Zhejiang Univ Sci B 12(3):219–225

    Article  PubMed  PubMed Central  Google Scholar 

  38. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  39. Tomilova OG, Shternshis MV (2006) The effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi. Appl Biochem Microbiol 42(1):67–71

    Article  CAS  Google Scholar 

  40. Tann H, Soytong K (2016) Bioformulations and nano product from Chaetomium cupreum CC3003 to control leaf spot of rice var. Sen Pidoa in Cambodia. Int J Plant Biol 7(1):59–63

    CAS  Google Scholar 

  41. Soytong K (1992) Biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici using Chaetomium cupreum. Kasetsart J (Nat Sci) 26:310–313

    Google Scholar 

  42. Vilich V, Dolfen M, Sikora R (1998) Chaetomium spp. colonization of barley following seed treatment and its effect on plant growth and Erysiphe graminis f. sp. hordei disease severity /Chaetomium spp. Besiedlung von Gerste nach Samenbehandlung und deren Einfluß auf das Pflanzenwachstum und die Befallsstärke von nachfolgend inokuliertem Mehltau (Erysiphe graminis f. sp. hordei). Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz/J Plant Dis Protect 105(2):130–139. Retrieved from http://www.jstor.org/stable/43215227

  43. Rajakumar E, Aggarwal R, Singh B (2005) Fungal antagonists for the biological control of Ascochyta blight of chickpea. Acta Phytopathologica et Entomologica Hungarica 40(1–2):35–42

    Article  Google Scholar 

  44. Aggarwal R, Tewari AK, Srivastava KD, Singh DV (2004) Role of antibiosis in the biological control of spot blotch (Cochliobolus sativus) of wheat by Chaetomium globosum. Mycopathologia 157(4):369–377

    Article  CAS  Google Scholar 

  45. Istifadah N, Saleeba JA, McGee PA (2006) Isolates of endophytic Chaetomium spp. inhibit the fungal pathogen Pyrenophora tritici-repentis in vitro. Botany 84(7):1148–1155

    CAS  Google Scholar 

  46. Kumar S, Kaushik N, Proksch P (2013) Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. Springer Plus 2(1):37

    Article  PubMed  Google Scholar 

  47. Awad NE, Kassem HA, Hamed MA, El-Naggar MAA, El-Feky AMM (2014) Bioassays guided isolation of compounds from Chaetomium globosum. J Mycol Med 24(2):e35–e42

    Article  CAS  PubMed  Google Scholar 

  48. Charoenporn C, Kanokmedhakul S, Lin FC, Poeaim S, Soytong K (2010) Evaluation of bio-agent formulations to control Fusarium wilt of tomato. Afr J Biotechnol 9(36):5836–5844

    CAS  Google Scholar 

  49. Zhang G, Wang F, Qin J, Wang D, Zhang J, Zhang Y, Zhang S, Pan H (2013a) Efficacy assessment of antifungal metabolites from Chaetomium globosum No. 05, a new biocontrol agent, against Setosphaeria turcica. Biol Control 64(1):90–98

    Article  CAS  Google Scholar 

  50. Di Pietro A, Gut-Rella M, Pachlatko JP, Schwinn FJ (1992) Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 82(2):131–135

    Article  Google Scholar 

  51. Zhao SS, Zhang YY, Yan W, Cao LL, Xiao Y, Ye YH (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett 364(3):fnw287

    Google Scholar 

  52. Jiang C, Song J, Zhang J, Yang Q (2017) Identification and characterization of the major antifungal substance against Fusarium sporotrichioides from Chaetomium globosum. World J Microb Biot 33(6):108

    Article  CAS  Google Scholar 

  53. Zhang G, Zhang Y, Qin J, Qu X, Liu J, Li X, Pan H (2013b) Antifungal metabolites produced by Chaetomium globosum No. 04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53(2):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu Y, Zhang W, Zhang P, Ruan W, Zhu X (2012) Nematicidal activity of chaetoglobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J Agric Food Chem 61(1):41–46

    Article  PubMed  CAS  Google Scholar 

  55. Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho K, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252(2):309–313

    Article  CAS  PubMed  Google Scholar 

  56. Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Loungsysouphanh S, Soytong K, Sobe M, Kongsaeree K, Prabpai S, Suksamran A (2006) Antifungal Azaphilones from the fungus, Chaetomium cupreum CC3003. J Nat Prod 69:891–895

    Article  CAS  PubMed  Google Scholar 

  57. Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong S, Prabpai S, Kongsearee P (2008) Bisspiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron 64:9636–9645

    Article  CAS  Google Scholar 

  58. Thohinung S, Kanokmedhakul S, Kanokmedhakul K, Kukongviriyapan V, Tusskorn O, Soytong K (2010) Cytotoxic 10-(indol-3-yl)-[13] cytochalasans from the fungus Chaetomium elatum ChE01. Arch Pharm Res 33:1135–1141

    Article  CAS  PubMed  Google Scholar 

  59. Vilavong S, Soytong K (2017) Application of a new bio-formulation of Chaetomium cupreum for biocontrol of Colletotrichum gloeosporioides causing coffee anthracnose on Arabica variety in Laos. AGRIVITA J Agric Sci 39(3):303–310

    Google Scholar 

  60. Sommers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  Google Scholar 

  61. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS 26(1):1–20

    Google Scholar 

  62. Khan AL, Shinwari ZK, Kim YH, Waqas M, Hamayun M, Kamran M, Lee IJ (2012) Role of endophyte Chaetomium globosum LK4 in growth of Capsicum annuum by production of gibberellins and indole acetic acid. Pak J Bot 44(5):1601–1607

    Google Scholar 

  63. Kowapradit S, Pongnak W, Soytong K (2007) Biological ash from bottom coal ash mixed with beneficial fungi on the growth of rice varpathumthani. JASTA 3(1):129–136

    Google Scholar 

  64. Yadav BK, Niwas R, Yadav RS, Tarafdar JC (2009) Effect of Chaetomium globosum inoculation and organic matter on phosphorus. Ann Arid Zone 48(1):41–44

    Google Scholar 

  65. Tarafdar JC, Gharu A (2006) Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol 32(3):273–283

    Article  Google Scholar 

  66. AbouAlhamed MF, Shebany YM (2012) Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol 14(5):859–863

    Article  CAS  Google Scholar 

  67. Ortiz J, Soto J, Almonacid L, Fuentes A, Campos-Vargas R, Arriagada C (2019) Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion. Plant Soil 436(1–2):449–461

    Article  CAS  Google Scholar 

  68. Soytong K, Jindawong N, Yang Q (1999) Evaluation of Chaetomium for biological control of Fusarium wilt of tomato in P. R. China. In: Proceedings of the 5th international conference on plant protection in the tropics, Malaysia, pp 484–487

    Google Scholar 

  69. Soytong K, Ratancherdchai K (2005) Application of mycofungicide to control late blight of potato. J Agric Technol 1:19–32

    Google Scholar 

  70. Soytong K, Charoenporn C, Kanokmedhakul S (2013) Evaluation of microbial elicitors to induce plant immunity for tomato wilt. Afr J Microbiol Res 7:1993–2000

    Article  CAS  Google Scholar 

  71. Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  72. Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Biol 1:227–234

    Google Scholar 

  73. Miyazaki T, Inamine T, Yamauchi S, Nagayoshi Y, Saijo T (2010) Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata. FEMS Yeast Res 10(3):343–352

    Article  CAS  PubMed  Google Scholar 

  74. Ahammed SK, Aggarwal R, Sneh, Kapoor HC (2008b) Production, partial purification and characterization of extracellular xylanase from Chaetomium globosum. J Plant Biochem Biotechnol 17:95–98

    Article  CAS  Google Scholar 

  75. Ahammed SK, Aggarwal R, Sharma S, Gupta S, Bashyal BM (2012) Production, partial purification and characterization of extra-cellular B-1, 3 glucanase from Chaetomium globosum and its antifungal activity against Bipolaris sorokiniana causing spot blotch of wheat. J Mycol Plant Pathol 42:146–152

    CAS  Google Scholar 

  76. Zhang HY, Yang Q, Wang G, Shang FD (2009) Analysis of expressed sequence tags from Chaetomium cupreum grown under conditions associated with mycoparasitism. Lett App Microbiol 48:275–280. https://doi.org/10.1111/j.1472-765X.2008.02487.x

    Article  CAS  Google Scholar 

  77. Aggarwal R, Gupta S, Sharma S, Banerjee S, Singh P (2012) Cloning and expression of a small heat and salt tolerant protein (Hsp22) from Chaetomium globosum. Ind J Expt Biol 50:826–832

    CAS  Google Scholar 

  78. Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  79. Kumar D, Kumar SS, Kumar J, Kumar O, Mishra SV, Kumar R, Malyan SK (2017) Xylanases and their industrial applications: a review. Biochem Cell Arch 17(1):353–360

    Google Scholar 

  80. Vaghasia PM, Davariya RL, Daki RN (2017) Effect of bio-Phos (Chaetomium globosum) on Castor (Ricinus communis L.) yield at different levels of phosphorus under irrigated conditions. Int J Curr Microbiol Appl Sci 6(9):1974–1978

    Article  CAS  Google Scholar 

  81. Ganju RK, Vithayathil PJ, Murthy SK (1989) Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol 35:836–842

    Article  CAS  Google Scholar 

  82. Sandhu DK, Puri R (1988) The developmental patterns of endo-β-1,4-glucanase and β-glucosidase of Chaetomium erraticum. Can J Bot 66:2162–2166

    Article  CAS  Google Scholar 

  83. Ahammed SK, Aggarwal R, Srivastava KD (2008a) Production of extracellular proteins and cellulases by different isolates of Chaetomium globosum. Indian Phytopath 61(4):437–440

    CAS  Google Scholar 

  84. Umikalsom MS, Ariff AB, Hassan MA, Karim MIA (1998) Kinetics of cellulose production by Chaetomium globosum at different levels of dissolved oxygen tension using oil palm empty fruit bunch fibre as substrate. World J Microbiol Biotechnol 14:491e498

    Article  Google Scholar 

  85. Yang Q, Cong H, Zhang H, Yao L, Liu P, Jin H (2007) Study on bio-control related genes of Trichoderma sp. and Chaetomium spp. Kmitl Sci Tech J 7(1):8–15

    Google Scholar 

  86. Liu ZH, Yang Q, Hu S, Zhang JD, Ma J (2008) Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Appl Microbiol Biotechnol 80(2):241–252

    Article  CAS  PubMed  Google Scholar 

  87. Aggarwal R (2015) Chaetomium globosum: a potential biocontrol agent and its mechanism of action. Indian Phytopath 68(1):8–24

    Google Scholar 

  88. Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Plant Pathol 1105:177–189

    Article  Google Scholar 

  89. Yang JK, Huang XW, Tian BY, Wang M, Niu QH, Zhang KQ (2005) Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnol Lett 27:1123–1128

    Article  CAS  PubMed  Google Scholar 

  90. Li AN, Ding AY, Chen J, Liu SA, Zhang M, Li DC (2007) Purification and characterization of two thermostable proteases from the thermophilic fungus Chaetomium thermophilum. J Microbiol Biotechnol 17(4):624–631

    CAS  PubMed  Google Scholar 

  91. Liu Z, Yang Q, Nie Y (2006) Cloning and expression of Hsp22.4 gene from Chaetomium globosum. J For Res 17(3):259–262

    Article  CAS  Google Scholar 

  92. Jin Y, Weining S, Nevo E (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102(52):18992–18997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reithner B, Ball K, Scala V, Peissl I, Seidl V, Zeilinger S (2004) Two G alpha subunits and a map kinase are involved in host recognition and mycoparasitism-related gene expression in Trichoderma atroviride. In: Seventh European conference on fungal genetics. Copenhagen, Denmark, p 101

    Google Scholar 

  94. Larran S, Mónaco C, Alippi H (2000) Endophytic fungi in beet (Beta vulgaris L. var. esculenta) leaves. Adv Hort Sci 14:193–196

    Google Scholar 

  95. Larran S, Mónaco C, Alippi H (2001) Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J Microbiol Biotechnol 17:181–184

    Article  Google Scholar 

  96. Larran S, Rollán C, Bruno Angeles HJ, Alippi HE, Urrutia MI (2002) Endophytic fungi in healthy soybean leaves. Invest Agr Prod Prot Veg 17:173–178

    Google Scholar 

  97. Larran S, Perelló A, Simón MA, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 4:564–572

    Google Scholar 

  98. Novas MV, Carmarán CC (2008) Studies on diversity of foliar fungal endophytes of naturalised trees from Argentina, with a description of Haplotrichum minutissimum sp. nov. Flora 203(7):610–616

    Article  Google Scholar 

  99. Perelló A, Mónaco C (2007) Status and progress of biological control of wheat foliar diseases in Argentina. In: Seed borne diseases: ecofriendly management, pp 283–321. ISBN 81-7233-468-0

    Google Scholar 

  100. Amengual S, Moya P, Sisterna M (2014) Antagonismo del hongo Chaetomium spp., potencial biocontrolador de Bipolaris sorokiniana, agente causal de la mancha borrosa de la cebada. XIII Congreso Argentino de Micología, 24 al 27 de agosto de 2014, CABA, Buenos Aires, Argentina

    Google Scholar 

  101. Moya P, Pedemonte D, Amengual S, Sisterna M (2016) Antagonism and modes of action of Chaetomium spp. fungus, potential biocontrol agent of barley foliar fungal diseases. Bol Soc Argent Bot 51:569–578. ISSN 0373-580X

    Article  Google Scholar 

  102. Cipollone MJ, Sisterna MN (2018) Antagonismo in vitro de Chaetomium spp. frente a Bipolaris sorokiniana, agente causal de la mancha borrosa en cebada XVI Jornadas Fitosanitarias Argentinas, 10-12 de Octubre de 2018, San Miguel de Tucumán, Tucumán, Argentina. Revista Agronómica del Noroeste Argentino. Suplemento volumen 38(1):67. ISSN 0080-2069

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moya, P., Cipollone, J., Sisterna, M. (2020). The Fungal Genus Chaetomium and Its Agricultural Applications. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-51034-3_12

Download citation

Publish with us

Policies and ethics