Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 38))

  • 688 Accesses

Abstract

In the present chapter various approaches to estimate the fractal dimension and the Hausdorff dimension, which involve Lyapunov functions, are developed. One of the main results of this chapter is a theorem called by us the limit theorem for the Hausdorff measure of a compact set under differentiable maps. One of the sections of Chap. 5 is devoted to applications of this theorem to the theory of ordinary differential equations. The use of Lyapunov functions in the estimates of fractal dimension and of topological entropy is also considered. The representation is illustrated by examples of concrete systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, J., Barreira, L.: Hausdorff dimension in convex bornological spaces. J. Math. Anal. Appl. 266, 590–601 (2002)

    Article  MathSciNet  Google Scholar 

  2. Anikushin, M.M., Reitmann, V.: Development of the topological entropy conception for dynamical systems with multiple time. Electr. J. Diff. Equ. Contr. Process. 4 (2016). (Russian); English transl. J. Diff. Equ. 52(13), 1655–1670 (2016)

    Google Scholar 

  3. Arnédo, A., Coullet, P.H., Spiegel, E.A.: Chaos in a finite macroscopic system. Phys. Lett. 92A, 369–373 (1982)

    Google Scholar 

  4. Benedicks, M. Carleson, L.: The dynamics of the Hénon map. Ann. Math. II. Ser. 133(1), 73–169 (1991)

    Google Scholar 

  5. Boichenko, V.A.: Frequency theorems on estimates of the dimension of attractors and global stability of nonlinear systems. Leningrad, Dep. at VINITI 04.04.90, No. 1832–B90 (1990) (Russian)

    Google Scholar 

  6. Boichenko, V.A.: The Lyapunov function in estimates of the Hausdorff dimension of attractors of an equation of third order. Diff. Urav. 30, 913–915 (1994). (Russian)

    MathSciNet  Google Scholar 

  7. Boichenko, V.A., Leonov, G.A.: On estimates of attractors dimension and global stability of generalized Lorenz equations. Vestn. Lening. Gos. Univ. Ser. 1, 2, 7–13 (1990) (Russian); English transl. Vestn. Lening. Univ. Math. 23(2), 6–12 (1990)

    Google Scholar 

  8. Boichenko, V.A., Leonov, G.A.: On Lyapunov functions in estimates of the Hausdorff dimension of attractors. Leningrad, Dep. at VINITI 28.10.91, No. 4 123–B 91 (1991) (Russian)

    Google Scholar 

  9. Boichenko, V.A., Leonov, G.A.: Lyapunov functions in the estimation of the topological entropy. Preprint, University of Technology Dresden, Dresden (1994)

    Google Scholar 

  10. Boichenko, V.A., Leonov, G.A.: Lyapunov’s direct method in estimates of topological entropy. Zap. Nauchn. Sem. POMI 231, 62–75 (1995) (Russian); English transl. J. Math. Sci. 91(6), 3370–3379 (1998)

    Google Scholar 

  11. Boichenko, V.A., Leonov, G.A.: Lyapunov functions, Lozinskii norms, and the Hausdorff measure in the qualitative theory of differential equations. Am. Math. Soc. Transl. 2(193), 1–26 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Boichenko, V.A., Leonov, G.A.: On dimension estimates for the attractors of the Hénon map. Vestn. S. Peterburg Gos. Univ. Ser. 1, Matematika, (3), 8–13 (2000) (Russian); English transl. Vestn. St. Petersburg Univ. Math. 33 (3), 5–9 (2000)

    Google Scholar 

  13. Boichenko, V.A., Leonov, G.A., Franz, A., Reitmann, V.: Hausdorff and fractal dimension estimates of invariant sets of non-injective maps. Zeitschrift für Analysis und ihre Anwendungen (ZAA) 17(1), 207–223 (1998)

    Article  MathSciNet  Google Scholar 

  14. Chen, Z.-M.: A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors. Chaos, Solitons & Fractals 3(5), 575–582 (1993)

    Google Scholar 

  15. Coullet, P., Tresser, C., Arnédo, A.: Transition to stochasticity for a class of forced oscillators. Phys. Lett. 72 A, 268–270 (1979)

    Google Scholar 

  16. Courant, R.: Dirichlet’s Principle, Conformed Mappings, and Minimal Surfaces. Springer, New York (1977)

    Book  Google Scholar 

  17. Denisov, G.G.: On the rotation of a solid body in a resisting medium. Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 4, 37–43 (1989) (Russian)

    Google Scholar 

  18. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris, Ser. A 290, 1135–1138 (1980)

    Google Scholar 

  19. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dyn. Diff. Equ. 3, 133–177 (1991) [Preprint No. 8804, The Institute for Applied Mathematics and Scientific Computing, Indiana University, 1988]

    Google Scholar 

  20. Ermentrout, G.B.: Periodic doublings and possible chaos in neural models. SIAM J. Appl. Math. 44, 80–95 (1984)

    Article  MathSciNet  Google Scholar 

  21. Falconer, K.J.: The Geometry of Fractal sets. Cambridge Tracts in Mathematics 85, Cambridge University Press (1985)

    Google Scholar 

  22. Fathi, A.: Some compact invariant subsets for hyperbolic linear automorphisms of Torii. Ergod. Theory Dyn. Syst. 8, 191–202 (1988)

    Article  Google Scholar 

  23. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984)

    Book  Google Scholar 

  24. Glukhovsky, A.B.: Nonlinear systems in the form of superposition of gyrostats. Dokl. Akad. Nauk SSSR 266 (7) (1982) (Russian)

    Google Scholar 

  25. Glukhovsky, A.B., Dolzhanskii, F.V: Three-component geostrophic model of convection in rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. i Okeana 16, 451–462 (1980) (Russian)

    Google Scholar 

  26. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  27. Hénon, M.A.: A two-dimensional mapping with a strange attractor Commun. Math. Phys. 50, 69–77 (1976)

    Article  MathSciNet  Google Scholar 

  28. Ito, S.: An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism. Proc. Jpn. Acad. 46, 226–230 (1970)

    Article  MathSciNet  Google Scholar 

  29. Leonov, G.A.: On a method for investigating global stability of nonlinear systems. Vestn. Leningr. Gos. Univ. Mat. Mekh. Astron. 4, 11–14 (1991) (Russian); English transl. Vestn. Leningr. Univ. Math. 24(4), 9–11 (1991)

    Google Scholar 

  30. Leonov, G.A.: On estimates of the Hausdorff dimension of attractors. Vestn. Leningr. Gos. Univ. Ser. 1 15, 41–44 (1991) (Russian); English transl. Vestn. Leningr. Univ. Math. 24(3), 38–41 (1991)

    Google Scholar 

  31. Leonov, G.A., Boichenko, V.A.: Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math. 26, 1–60 (1992)

    Article  MathSciNet  Google Scholar 

  32. Leonov, G.A., Lyashko, S.A.: Surprising property of Lyapunov dimension for invariant sets of dynamical systems. DFG Priority Research Program “Dynamics: Analysis, Efficient Simulation, and Ergodic Theory”. Preprint 04 (2000)

    Google Scholar 

  33. Ott, E., Yorke, E.D., Yorke, J.A.: A scaling law: how an attractor’s volume depends on noise level. Physica D 16(1), 62–78 (1985)

    Article  MathSciNet  Google Scholar 

  34. Pikovsky, A.S., Rabinovich, M.I., Trakhtengerts, VYu.: Appearance of stochasticity on decay confinement of parametric instability. JTEF 74, 1366–1374 (1978). (Russian)

    Google Scholar 

  35. Pochatkin, M.A., Reitmann, V.: The Douady-Oesterlé theorem for dynamical systems in convex bornological spaces. Preprint, St. Petersburg State University, St. Petersburg (2017). (Russian)

    Google Scholar 

  36. Rabinovich, M.I.: Stochastic self-oscillations and turbulence. Uspekhi Fiz. Nauk 125, 123–168 (1978). (Russian)

    Article  MathSciNet  Google Scholar 

  37. Reitmann, V.: Dynamical Systems, Attractors and their Dimension Estimates. St. Petersburg State University Press, St. Petersburg (2013). (Russian)

    Google Scholar 

  38. Rössler, O.E.: Different types of chaos in two simple differential equations. Z. Naturforsch. 31 A, 1664–1670 (1976)

    Google Scholar 

  39. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  MathSciNet  Google Scholar 

  40. Smith, R.A.: Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. R. Soc. Edinburgh 104A, 235–259 (1986)

    Article  MathSciNet  Google Scholar 

  41. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, Berlin (1988)

    Book  Google Scholar 

  42. Thi, D.T., Fomenko, A.T.: Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem, Nauka, Moscow (1987) (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N., Reitmann, V. (2021). Dimension and Entropy Estimates for Dynamical Systems. In: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Emergence, Complexity and Computation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-50987-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50987-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50986-6

  • Online ISBN: 978-3-030-50987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics