Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 38))

Abstract

In Chap. 2 the dimension of a vector space was defined as the maximal number of linearly independent vectors existing in it. The simplest example of an n-dimensional space, whose dimension is understood in this sense, is the space \(\mathbb R^n\). The dimension theory, which was developed in the early 20th century, has extended this conception to more general classes of spaces and sets. In the following we give a short introduction into important notions of dimension for sets in general topological or metric spaces. We restrict ourselves to those dimensions and their properties which are especially useful in the investigation of ODE’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.A., Konheim, A., McAndrew, M.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MathSciNet  Google Scholar 

  2. Alexandrov, P.S., Pasynkov, B.A.: Introduction to Dimension Theory. Nauka, Moscow (1973). (Russian)

    Google Scholar 

  3. Ben-Artzi, A., Eden, A., Foias, C., Nicolaenko, B.: Hölder continuity for the inverse of the Mañé projection. J. Math. Anal. Appl. 178, 22–29 (1993)

    Article  MathSciNet  Google Scholar 

  4. Besicovitch, A.S.: Sets of fractional dimensions. Part I. Math. Ann. 101, 161–193 (1929)

    Article  MathSciNet  Google Scholar 

  5. Bowen, R.: Topological entropy and Axiom A. Global Analysis. In: Proceedings of Symposia in Pure Mathematics, vol. 14, pp. 23–41 (1968). (Am. Math. Soc.)

    Google Scholar 

  6. Bowen, R.: Entropy for group endomorphisms and homogenous spaces. Trans. Am. Math. Soc. 153(171), 401–414 (1971)

    Article  Google Scholar 

  7. Brouwer, L.E.J.: Beweis der Invarianz der Dimensionszahl. Math. Ann. 70, 161–165 (1911)

    Article  MathSciNet  Google Scholar 

  8. Brouwer, L.E.J.: Über den natürlichen Dimensionsbegriff. J. f. reine u. angew. Math. 142, 146–152 (1913)

    Article  Google Scholar 

  9. Carathéodory, C.: Über das lineare Mass von Punktmengen-eine Verallgemeinerung des Längenbegriffs. Göttinger Nachrichten, pp. 406–426 (1914)

    Google Scholar 

  10. Dinaburg, E.I.: The relation between topological entropy and metric entropy. Dokl. Akad. Nauk SSSR 190, 19–22 (1970). (Russian)

    MathSciNet  MATH  Google Scholar 

  11. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dynam. Diff. Equ. 3, 133–177 (1991). (Preprint No. 8804, The Institute for Applied Mathematics and Scientific Computing, Indiana University, 1988)

    Google Scholar 

  12. Edgar, G.A.: Measure. Topology and Fractal Geometry. Springer, Berlin (1990)

    Google Scholar 

  13. Falconer, K.J.: The geometry of fractal sets. In: Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press (1985)

    Google Scholar 

  14. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    Google Scholar 

  15. Fathi, A.: Expansiveness, hyperbolicity, and Hausdorff dimension. Commun. Math. Phys. 126, 249–262 (1989)

    Article  MathSciNet  Google Scholar 

  16. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    Google Scholar 

  17. Foias, C., Olsen, E.J.: Finite fractal dimension and Hölder-Lipschitz parameterization. Ind. Univ. Math. J. 45, 603–616 (1996)

    Article  Google Scholar 

  18. Gu, X.: An upper bound for the Hausdorff dimension of a hyperbolic set. Nonlinearity 4(3), 927–934 (1991)

    Article  MathSciNet  Google Scholar 

  19. Hata, M.: Topological aspects of self-similar sets and singular functions. In: Bélairc, J., Dubuc, S. (eds.) Fractal Geometry and Analysis. Canada, Kluwer (1991)

    Google Scholar 

  20. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79, 157–179 (1919)

    Article  Google Scholar 

  21. Howroyd, J.D.: On dimension and on the existence of sets of finite positive Hausdorff measure. Proc. Lond. Math. Soc. 70, 581–604 (1995)

    Article  MathSciNet  Google Scholar 

  22. Hunt, B.R., Kaloshin, VYu.: Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces. Nonlinearity 12, 1263–1275 (1999)

    Article  MathSciNet  Google Scholar 

  23. Hunt, B.R., Sauer, T., James, J.A.: Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27(2), 217–238 (1992)

    Article  MathSciNet  Google Scholar 

  24. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1948)

    Google Scholar 

  25. Hutchinson, J.E.: Fractals and self-similarity. Ind. Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  26. Ito, S.: An estimate from above for the entropy and the topological entropy of a \(C^1\)-diffeomorphism. Proc. Jpn. Acad. 46, 226–230 (1970)

    Article  MathSciNet  Google Scholar 

  27. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. (Encyclopedia of Mathematics and its Applications), vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  28. Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces. Dokl. Akad. Nauk, SSSR 119, 861–864 (1958). (Russian)

    Google Scholar 

  29. Kolmogorov, A.N., Tihomirov, V.M.: \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in function spaces. Uspekhi Mat. Nauk 14(2), 3–86 (1960). (Russian, Trans. Am. Math. Soc. Transl. Ser. 2 17, 277–364, 1960)

    Google Scholar 

  30. Kornfeld, I.P., Sinai, Ya.G., Fomin, S.V.: Ergodic Theory. Nauka, Moscow (1980). (Russian)

    Google Scholar 

  31. Lebesgue, H.: Sur la non applicabilité de deux domaines appartemant à deux espaces de n et n+p dimensions. Math. Ann. 70, 166–168 (1911)

    Article  MathSciNet  Google Scholar 

  32. Mané, R.: On the dimension of the compact invariant sets of certain non-linear maps. Lecture Notes in Mathematics, vol. 898, pp. 230–241. Springer, Berlin (1981)

    Google Scholar 

  33. Mané, R.: Ergodic Theory and Differentiable Dynamics. Springer, Berlin (1987)

    Google Scholar 

  34. Menger, K.: Über umfassendste \(n\)-dimensionale Mengen. Proc. Akad. Wetensch. Amst. 29, 1125–1128 (1926)

    MATH  Google Scholar 

  35. Menger, K.: Dimensionstheorie. B. G. Teubner, Leipzig (1928)

    Google Scholar 

  36. Moran, P.: Additive functions of intervals and Hausdorff measure. Math. Proc. Camb. Phil. Soc. 42, 15–23 (1946)

    Article  MathSciNet  Google Scholar 

  37. Nöbeling, G.: Über eine n-dimensionale Universalmenge in \(R_{2n+1},\). Math. Ann. 104, 71–80 (1930)

    Article  Google Scholar 

  38. Okon, T.: Dimension estimate preserving embeddings for compacta in metric spaces. Archiv der Mathematik 78, 36–42 (2002)

    Article  MathSciNet  Google Scholar 

  39. Pesin, Ya.B.: Dimension type characteristics for invariant sets of dynamical systems. Uspekhi Mat. Nauk 43(4), 95–128 (1988). (Russian, English Transl. Russian Math. Surveys 43(4), 111–151, 1988)

    Google Scholar 

  40. Pesin, Ya.B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics, The University of Chicago Press, Chicago and London (1997)

    Google Scholar 

  41. Poincaré, H.: Pourquoi l’espace a trois dimensions. Revue de Métaphysique et de Morale 20, 484 (1912)

    MATH  Google Scholar 

  42. Pontryagin, L.S., Shnirelman, L.G.: On a metric property of dimension. Appendix to the Russian Translation of Hurewitz, W. and H. Wallman, Dimension Theory. Izdat. Inostr. Lit., Moscow (1948)

    Google Scholar 

  43. Postnikov, M.M.: Smooth Manifolds. Nauka, Moscow (1987). (Russian)

    Google Scholar 

  44. Reitmann, V.: Regular and Chaotic Dynamics. Teubner Verlagsgesellschaft, Stuttgart-Leipzig, B. G (1996). (German)

    Google Scholar 

  45. Reitmann, V., Popov, S.: Embedding of compact invariant sets of dynamical systems on infinite-dimensional manifolds into finite-dimensional spaces. In: Abstracts, 9th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, Orlando, USA, p. 247 (2012)

    Google Scholar 

  46. Robinson, J.C.: Dimensions, Embeddings, and Attractors, p. 186. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  47. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  MathSciNet  Google Scholar 

  48. Sinai, Ya.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk, SSSR 124, 768–771 (1959). (Russian)

    Google Scholar 

  49. Titchmarsh, E.C.: The Theory of Functions. Oxford (1932)

    Google Scholar 

  50. Urysohn, P.S.: Mémoire sur les multiplicités cantoriennes. Fund. Math. 7/8, 30–139, 225–359 (1925)

    Google Scholar 

  51. Wegmann, H.: Die Hausdorff-Dimension von kartesischen Produktmengen in metrischen Räumen. J. Reine und Angew. Math. 234, 163–171 (1969)

    MathSciNet  MATH  Google Scholar 

  52. Whitney, H.: Differentiable manifolds. Ann. Math., II. Ser. 37, 645–680 (1936)

    Google Scholar 

  53. Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N., Reitmann, V. (2021). Introduction to Dimension Theory. In: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Emergence, Complexity and Computation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-50987-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50987-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50986-6

  • Online ISBN: 978-3-030-50987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics