Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 38))

  • 878 Accesses

Abstract

Global stability and dimension properties of nonlinear differential equations essentially depend on the contraction properties of k-parallelopipeds or k-ellipsoids under the flow of the associated variational equations. The goal of this second chapter is to develop some elements of multilinear algebra for the investigation of linear differential equations. This includes the discussion of singular value inequalities for linear operators in finite-dimensional spaces, the Fischer-Courant theorem as an extremal principle for eigenvalues of Hermitian matrices, exterior powers of operators and spaces, the logarithmic norm calculation and the use of the Kalman-Yakubovich frequency theorem for the effective estimation of time-dependent singular values of the solution operator to linear differential equations. The Kalman-Yakubovich frequency theorem is also used to get sufficient conditions for convergence in dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suppose \(({\mathbb {E}}, (\cdot ,\cdot )_{\mathbb {E}})\) is an m-dimensional Euclidean space and \(\{u_i\}^m_{i=1}\) is an orthonormal basis of \({\mathbb {E}}\). If \(a_1 \ge a_2\ge \cdots a_m > 0\) are arbitrary positive numbers the set \(\mathcal{E}:= \{ \sum ^m_{i=1} \xi _i u_i \,|\,\sum ^m_{i=1} ({\xi _i \over a_i})^2 \le 1\}\) is called (non-degenerated) ellipsoid in \({\mathbb {E}}\) with semi-axes \(u_1, \ldots , u_m\) and length of semi-axes \(a_1, \ldots , a_m\).

References

  1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillations. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  2. Binet, J.P.M.: Mémoire sur un systéme de fomules analytiques, et le\(\breve{u}\)r application à des considérations géometriques. J. École Polytech. 9 Cahier 16, 280–302 (1812)

    Google Scholar 

  3. Boichenko, V.A., Leonov, G.A.: Lorenz equations in dynamics of nematic liquid crystals. Dep. in VINITI 25.08.86, 6076–V86, Leningrad (1986). (Russian)

    Google Scholar 

  4. Boichenko, V.A., Leonov, G.A.: On orbital Lyapunov exponents of autonomous systems. Vestn. Leningrad Gos. Univ. Ser. 1, 3, 7–10 (1988) (Russian, English transl. Vestn. Leningrad Univ. Math., 21(3), 1–6, 1988)

    Google Scholar 

  5. Boichenko, V.A., Leonov, G.A.: Lyapunov functions, Lozinskii norms, and the Hausdorff measure in the qualitative theory of differential equations. Am. Math. Soc. Transl. 2(193), 1–26 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Cauchy, A.L.: Mémoire sur les fouctions qui ne peuvent obteniv que deux valeurs égales et de signes contraires par suite des transpositions op’erées entre les variables quelles referment. J. École Polytech. 10 Cahier 17, 29–112 (1812)

    Google Scholar 

  7. Cesari, L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. Springer, Berlin (1959)

    Book  Google Scholar 

  8. Chen, Z.-M.: A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors. Chaos, Solitons Fractals 3(5), 575–582 (1993)

    Google Scholar 

  9. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D.C.Heath, Boston, Mass (1965)

    MATH  Google Scholar 

  10. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Tech. (Sweden) 130 (1959)

    Google Scholar 

  11. Demidovich, B.P.: Lectures on Mathematical Stability Theory. Nauka, Moscow (1967). (Russian)

    MATH  Google Scholar 

  12. Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Academic Press, New York (1975)

    MATH  Google Scholar 

  13. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris Ser. A 290, 1135–1138 (1980)

    Google Scholar 

  14. Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations I. Proc. Natl. Acad. Sci. (U.S.A.) 35, 652–655 (1949)

    Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  16. Fiedler, M.: Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices. Czechoslovak Math. J. 24, 392–402 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Forni, F., Sepulchre, R.: A differential Lyapunov framework for contraction analysis. IEEE Trans. Autom. Control 59(3), 614–628 (2014)

    Article  MathSciNet  Google Scholar 

  18. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  19. Ghidaglia, J.M., Temam, R.: Attractors for damped nonlinear hyperbolic equations. J. Math. Pures et Appl. 66, 273–319 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Giesl, P.: Converse theorems on contraction metrics for an equilibrium. J. Math. Anal. Appl. 424(2), 1380–1403 (2015)

    Article  MathSciNet  Google Scholar 

  21. Golo, V.L., Kats, E.I., Leman, A.A.: Chaos and long-lived modes in the dynamics of nematic liquid crystals. JETF 86, 147–156 (1984). (Russian)

    Google Scholar 

  22. Hale, J.K., Rangel, G.: Lower semicontinuity of attractors of gradient systems and applications. Annali di Mat. Pura Appl. (IV)(CLIV), 281–326 (1989)

    Google Scholar 

  23. Hassard, B., Zhang, J.: Existence of a homoclinic orbit of the Lorenz system by precise shooting. SIAM J. Math. Anal. 25, 179–196 (1994)

    Article  MathSciNet  Google Scholar 

  24. Horn, A.: On the singular values of a product of completely continuous operators. Proc. Natl. Acad. Sci. (U.S.A) 36, 374–375 (1950)

    Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  26. Il’yashenko, Yu.S.: On the dimension of attractors of \(k\)-contracting systems in an infinite-dimensional space. Moskov Gos. Univ. Ser. 1, Mat. Mekh. 3(3), 52–59 (1983). (Russian, English transl. Mosc. Univ. Math. Bull. 38(3), 61–69, 1983)

    Google Scholar 

  27. Kalman, R.E.: Lyapunov functions for the problem of Lur’e in automatic control. Proc. Natl. Acad. Sci. U.S.A 49(2), 201–205 (1963)

    Article  Google Scholar 

  28. Ledrappier, F.: Some relations between dimension and Lyapunov exponents. Commun. Math. Phys. 81, 229–238 (1981)

    Article  Google Scholar 

  29. Lembcke, J., Reitmann, V.: Compound matrices and Hausdorff dimension estimates. DFG Priority Research Program “Dynamics: Analysis, efficient simulation, and ergodic theory", Preprint 07 (1995)

    Google Scholar 

  30. Leonov, G.A.: Global stability of the Lorenz system. Prikl. Mat. Mekh. 47(5), 869–871 (1983). (Russian)

    Google Scholar 

  31. Leonov, G.A.: On the lower estimates of the Lyapunov exponents and the upper estimates of the Hausdorff dimension of attractors. Vestn. S. Peterburg Gos. Univ. Ser. 1, 29 (4), 18 – 24 (1996). (Russian)

    Google Scholar 

  32. Leonov, G.A.: Estimates of the Lyapunov exponents for discrete systems. Vestn. S. Peterburg Gos. Univ. Ser. 1, 30(3), 49–56 (1997). (Russian)

    Google Scholar 

  33. Leonov, G.A.: Lyapunov Exponents and Problems of Linearization. From Stability to Chaos. St. Petersburg University Press, St. Petersburg (1997)

    Google Scholar 

  34. Leonov, G.A.: On a higher-dimensional analog of the Poincaré criterion of orbital stability. Diff. Urav. 24, 1637–1639 (1988). (Russian, English transl. J. Diff. Equ. 24, 1988)

    Google Scholar 

  35. Leonov, G.A., Noack, A., Reitmann, V.: Asymptotic orbital stability conditions for flows by estimates of singular values of the linearization. Nonlinear Anal. Theory Methods Appl. 44, 1057–1085 (2001)

    Article  MathSciNet  Google Scholar 

  36. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Non-local methods for pendulum-like feedback systems. Teubner-Texte zur Mathematik, Bd. 132, B. G. Teubner Stuttgart-Leipzig (1992)

    Google Scholar 

  37. Li, M.Y., Muldowney, J.S.: On Bendixson’s criterion. J. Diff. Equ. 106(1), 27–39 (1993)

    Article  MathSciNet  Google Scholar 

  38. Lidskii, V.B.: On the characteristic numbers of the sum and product of symmetric matrices. Dokl. Akad. Nauk, SSSR, 75, 769–772 (1950). (Russian)

    Google Scholar 

  39. London, D.: On derivations arising in differential equations. Linear Multilinear Algebra 4, 179–189 (1976)

    Article  MathSciNet  Google Scholar 

  40. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  41. Lozinskii, S.M.: Error estimation in the numerical integration of ordinary differential equations. I., Izv. Vuzov. Matematika 5, 52–90 (1958). (Russian)

    Google Scholar 

  42. L’vovich, A.Yu., Rodynkov, F.F.: The Equations of Electrical Machines. St. Petersburg State University Press, St. Petersburg (1997). (Russian)

    Google Scholar 

  43. Lyapunov, A.M.: The general problem of the stability of motion. Kharkov (1892) (Russian, Engl. transl. Intern. J. Control (Centenary Issue), 55, 531–572, 1992)

    Google Scholar 

  44. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston (1964)

    MATH  Google Scholar 

  45. Matsumoto, T., et al.: Bifurcations: Sights, Sounds, and Mathematics. Springer, Tokyo (1993)

    Book  Google Scholar 

  46. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20, 857–871 (1990)

    Article  MathSciNet  Google Scholar 

  47. Petrovskaya, N.V., Yudovich, V.I.: Homoclinic loops in the Salzman-Lorenz equation. Dep. at VINITI 28.06.79, No. 2, 380–79 (1979). (Russian)

    Google Scholar 

  48. Popov, V.M.: Absolute stability of nonlinear systems of automatic control. Avtomat. i Telemekh. 22, 961–979 (1961). (Russian)

    MathSciNet  Google Scholar 

  49. Reitmann, V., Kantz, H.: Generic analytical embedding methods for nonstationary systems based on control theory. In: Proceedings of International Conference on “Physics and Control", St. Petersburg (2005)

    Google Scholar 

  50. Reitmann, V., Zyryanov, D.: The global attractor of a multivalued dynamical system generated by a two-phase heating problem. In: Abstracts, 12th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, Taipei, Taiwan, vol. 414 (2018)

    Google Scholar 

  51. Smith, R.A.: Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. R. Soc. Edinb. 104A, 235–259 (1986)

    Article  MathSciNet  Google Scholar 

  52. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  Google Scholar 

  53. Weyl, H.: Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. (U.S.A) 35, 408–411 (1949)

    Google Scholar 

  54. Yakubovich, V.A.: The solution of some matrix inequalities which appear in the automatic control theory. Dokl. Akad. Nauk, SSSR 143(6), 1304– 1307 (1962). (Russian, English transl. Soviet Math. Dokl., 3, 1962)

    Google Scholar 

  55. Yakubovich, V.A., Leonov, G.A., Gelig, AKh: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific, Singapore (2004)

    Book  Google Scholar 

  56. Zaks, M.A., Lyubimov, D.V., Chernatynsky, V.I.: On the influence of vibration upon the regimes of overcritical convection. Izv. Akad. Nauk SSSR, Fiz. Atmos. i Okeana, 19, 312–314 (1983). (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N., Reitmann, V. (2021). Singular Values, Exterior Calculus and Logarithmic Norms. In: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Emergence, Complexity and Computation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-50987-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50987-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50986-6

  • Online ISBN: 978-3-030-50987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics