Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 38))

  • 724 Accesses

Abstract

The main tool in estimating dimensions of invariant sets and entropies of dynamical systems developed in this book is based on Lyapunov functions. In this chapter we introduce the basic concept of global attractors. The existence of a global attractor for a dynamical system follows from the dissipativity of the system. In order to show the last property we use Lyapunov functions. In this chapter we also consider some applications of Lyapunov functions to stability problems of the Lorenz system. A central result is the existence of homoclinic orbits in the Lorenz system for certain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbashin, E.A., Krasovskii, N.N.: On global stability of motion. Dokl. Akad. Nauk, SSSR, 86, 453–456 (1952) (Russian)

    Google Scholar 

  2. Birkhoff, G.D.: Dynamical Systems. Amer. Math. Soc. Colloquium Publications, New York (1927)

    MATH  Google Scholar 

  3. Boichenko, V.A., Leonov, G.A.: On estimates of attractors dimension and global stability of generalized Lorenz equations. Vestn. Leningrad Gos. Univ. Ser. 1, Matematika, 2, 7–13 (1990) (Russian); English transl. Vestn. Leningrad Univ. Math., 23(2), 6–12 (1990)

    Google Scholar 

  4. Cheban, D.N., Fakeeh, D.S.: Global Attractors of Dynamical Systems without Uniqueness. Sigma, Kishinev (1994). (Russian)

    Google Scholar 

  5. Chen, X.: Lorenz equations, part I: existence and nonexistence of homoclinic orbits. SIAM J. Math. Anal. 27(4), 1057–1069 (1996)

    Article  MathSciNet  Google Scholar 

  6. Chueshov, I.D.: Global attractors for nonlinear problems of mathematical physics. Uspekhi Mat. Nauk, 48 (3), 135–162 (1993) (Russian); English transl. Russian Math. Surveys, 48(3), 133–161 (1993)

    Google Scholar 

  7. Chueshov, I.D.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. ACTA Scientific Publishing House, Kharkov. Electron. library of mathematics. ACTA (2002)

    Google Scholar 

  8. Coomes, B.A.: The Lorenz system does not have a polynomial flow. J. Diff. Equ. 82, 386–407 (1989)

    Article  MathSciNet  Google Scholar 

  9. Demidovich, B.P.: Lectures on Mathematical Stability Theory. Nauka, Moscow (1967). (Russian)

    MATH  Google Scholar 

  10. Glukhovsky, A.B., Dolzhanskii, F.V: Three-component geostrophic model of convection in rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. i Okeana, 16, 451–462 (1980) (Russian)

    Google Scholar 

  11. Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics, vol. 36. Amer. Math. Soc. Colloquium Publications (1955)

    Google Scholar 

  12. Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964)

    MATH  Google Scholar 

  13. Hastings, S.P., Troy, W.C.: A shooting approach to chaos in the Lorenz equations. J. Diff. Equ. 127(1), 41–53 (1996)

    Article  MathSciNet  Google Scholar 

  14. Hirsch, M.W.: A note on the differential equations of Gleick-Lorenz. Proc. Amer. Math. Soc. 105, 961–962 (1989)

    Article  MathSciNet  Google Scholar 

  15. Kapitansky, L.V., Kostin, I.N.: Attractors of nonlinear evolution equations and their approximations. Leningrad Math. J. 2, 97–117 (1991)

    MathSciNet  Google Scholar 

  16. Kuratowski, K., Mostowski, A.: Set Theory. North-Holland Publishing Company, Amsterdam (1967)

    MATH  Google Scholar 

  17. Ladyzhenskaya, O.A.: On finding the minimal global attractors for the Navier-Stokes equations and other partial differential equations. Uspekhi Mat. Nauk., 42, 25–60 (1987) (Russian); English transl. Russian Math. Surveys, 42, 27–73 (1987)

    Google Scholar 

  18. Ladyzhenskaya, O.A.: Attractors for Semigroups and Evolution Equations. Cambridge Univ. Press, Cambridge (1991)

    Book  Google Scholar 

  19. Leonov, G.A.: Global stability of the Lorenz system. Prikl. Mat. Mekh., 47(5), 869–871 (1983) (Russian)

    Google Scholar 

  20. Leonov, G.A.: On a method for constructing of positive invariant sets for the Lorenz system. Prikl. Mat. Mekh., 49 (5), 860–863 (1985) (Russian); English transl. J. Appl. Math. Mech., 49, 660–663 (1986)

    Google Scholar 

  21. Leonov, G.A.: On the estimation of the bifurcation parameter values of the Lorenz system. Uspekhi Mat. Nauk., 43 (3), 189–200 (1988) (Russian); English transl. Russian Math. Surveys, 43(3), 216–217 (1988)

    Google Scholar 

  22. Leonov, G.A.: Estimation of loop-bifurcation parameters for a saddle-point separatrix of the Lorenz system. Diff. Urav., 26 (6), 972–977 (1988) (Russian); English transl. J. Diff. Equ., 24(6), 634–638 (1988)

    Google Scholar 

  23. Leonov, G. A.: Existence of homoclinic trajectories in the Lorenz system. Vestn. S. Peterburg Gos. Univ. Ser. 1, Matematika, 32, 13–15 (1999) (Russian); English transl. Vestn. St. Petersburg Univ. Math., 32(1), 13–15 (1999)

    Google Scholar 

  24. Leonov, G.A.: Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. Prikl. Mat. Mekh., 65 (1), 21–35 (2001) (Russian); English transl. J. Appl. Math. Mech., 65(1), 19–32 (2001)

    Google Scholar 

  25. Leonov, G.A.: General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys Lett. A. 376(45), 3045–3050 (2012)

    Google Scholar 

  26. Leonov, G.A., Boichenko, V.A.: Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math. 26, 1–60 (1992)

    Article  MathSciNet  Google Scholar 

  27. Leonov, G.A., Reitmann, V.: Lokalisierung der Lösung diskreter Systeme mit instationärer periodischer Nichtlinearität. ZAMM 66(2), 103–111 (1986)

    Article  Google Scholar 

  28. Leonov, G.A., Reitmann, V.: Localization of Attractors for Nonlinear Systems. Teubner-Texte zur Mathematik, Bd. 97, B. G. Teubner Verlagsgesellschaft, Leipzig, (1987) (German)

    Google Scholar 

  29. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Non-local Methods for Pendulum-like Feedback Systems. Teubner-Texte zur Mathematik, Bd. 132, B. G. Teubner Stuttgart-Leipzig (1992)

    Google Scholar 

  30. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  31. Pikovsky, A.S., Rabinovich, M.I., Trakhtengerts, VYu.: Appearance of stochasticity on decay confinement of parametric instability. JTEF 74, 1366–1374 (1978). (Russian)

    Google Scholar 

  32. Pliss, V.A.: Nonlocal Problems in the Theory of Oscillations. Academic Press, New York (1966)

    MATH  Google Scholar 

  33. Pliss, V.A.: Integral Sets of Periodic Systems of Differential Equations. Nauka, Moscow (1977). (Russian)

    MATH  Google Scholar 

  34. Reitmann, V.: Dynamical Systems. St. Petersburg State University Press, St. Petersburg, Attractors and their Dimension Estimates (2013). (Russian)

    MATH  Google Scholar 

  35. Reitmann, V.: Dimension estimates for invariant sets of dynamical systems. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 585–615. Springer, New York-Berlin (2001)

    Google Scholar 

  36. Robinson, J.C.: Global attractors: topology and finite-dimensional dynamics. J. Dynam. Diff. Equ. 11, 557–581 (1999)

    Article  MathSciNet  Google Scholar 

  37. Shestakov, A.A.: Generalized Lyapunov’s Direct Method in Distributed-Parameter Systems. Nauka, Moscow (1990). (Russian)

    Google Scholar 

  38. Sibirsky, K.S.: Introduction to Topological Dynamics. Nordhoff Intern. Publishing, Leyda (1975)

    MATH  Google Scholar 

  39. Sparrow, C.: The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982)

    Book  Google Scholar 

  40. Yakubovich, V.A.: The frequency theorem in control theory. Sibirsk. Mat. Zh. 14(2), 384–420 (1973). (Russian); English transl. Siberian Math. J., 14(2), 265–289 (1973)

    Google Scholar 

  41. Yakubovich, V.A., Leonov, G.A., Gelig, AKh: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific, Singapore (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N., Reitmann, V. (2021). Attractors and Lyapunov Functions. In: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Emergence, Complexity and Computation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-50987-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50987-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50986-6

  • Online ISBN: 978-3-030-50987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics