Skip to main content

Analytical Protocols in Chlorophyll Analysis

  • Chapter
  • First Online:
Pigments from Microalgae Handbook
  • 1274 Accesses

Abstract

Due to the importance of chlorophyll in phytoplankton, there are a number of analytical protocols. In this regard, the current chapter aims to be a practical guide for scientists interested in the description of the methodologies applicable to studying chlorophylls in phytoplankton. The complex pigment profile and the intricacies of pigment extraction from phytoplankton are the two main challenges encountered during chlorophyll analysis. The cell walls of certain species hinder the solvent capacity. For instance, Cyanobacteria and certain chlorophytes are termed recalcitrant. The current chapter will review (a) the different techniques that have been applied to guarantee the exhaustive chlorophyll extraction from microalgae and cyanobacteria, (b) the methods employed for chlorophyll analysis: which are often analyzed by liquid chromatography coupled with diode array detector (DAD). Considering the different structure of the chlorophyll derivatives present in phytoplankton, diverse chromatographic methods have been optimized. A deeper analysis has been achieved through the mass spectrophotometric (MS) studies of chlorophyll compounds of main microalgae and cyanobacteria, including the analysis of the fragmentation pathways to increase consistency of the identification. However, the disposal of appropriate standards is essential in chlorophyll investigation irrespective of the employed method of analysis. Only few chlorophyll standards are commercially available, and consequently protocols for yielding of the others have been specifically developed. Finally, the chapter will summarize the main chromatographic, spectroscopic properties, and MS characteristics of all chlorophyll present in phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airs, R. L. (2018). Mass spectrometry of chlorophylls from phototrophic prokaryotes. Current Organic Chemistry, 22, 877–884.

    CAS  Google Scholar 

  • Airs, R., & Garrido, J. L. (2011). Liquid chromatography-mass spectrometry for pigment analysis. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography (pp. 314–342). New York: Cambridge University Press.

    Google Scholar 

  • Airs, R. L., Temperton, B., Sambles, B., Farnham, G., Skill, S. C., & Llewellyn, C. A. (2014). Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Letters, 588, 3770–3777.

    CAS  PubMed  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, J., & Jeffries, S. W. (1971). A note on the occurrence of chlorophyllase in marine. Journal of Experimental Marine Biology and Ecology, 7, 255–262.

    CAS  Google Scholar 

  • Bowles, N. D., Paerl, H. W., & Tucker, J. (1985). Effective solvents and extraction periods employed in phytoplankton carotenoid and chl determinations. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1127–1131.

    CAS  Google Scholar 

  • Cartaxana, P., & Brotas, V. (2003). Effects of extraction on HPLC quantification of major pigments from benthic microalgae. Archiv fur Hydrobiologie, 157, 339–349.

    Google Scholar 

  • Chen, K., Rios, J. J., Pérez-Gálvez, A., & Roca, M. (2015a). Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. Journal of Chromatography A, 1406, 99–108.

    CAS  PubMed  Google Scholar 

  • Chen, K., Rios, J. J., Roca, M., & Pérez-Gálvez, A. (2015b). Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. Journal of Chromatography A, 1412, 90–99.

    CAS  PubMed  Google Scholar 

  • Franco, B. M., Navas, L. M., Gómez, C., Sepúlveda, C., & Acién, F. G. (2019). Monoalgal and mixed algal cultures discrimination by using an artificial neural network. Algal Research, 38, 101419.

    Google Scholar 

  • Freitas, S., Silva, N. G., Sousa, M. L., Ribeiro, T., Rosa, F., Leão, P. N., et al. (2019). Chlorophyll derivatives from marine cyanobacteria with lipid-reducing activities. Marine Drugs, 17, E229.

    PubMed  Google Scholar 

  • Furuya, K., Hayashi, M., & Yabushita, Y. (1998). HPLC determination of phytoplankton pigments using N, N-dimethyl formamide. Journal of Oceanography, 54, 199–203.

    CAS  Google Scholar 

  • Garrido, J. L., & Roy, S. (2015). The use of HPLC for the characterization of phytoplankton pigments. Methods in Molecular Biology, 1308, 241–252.

    PubMed  Google Scholar 

  • Garrido, J. L., & Zapata, M. (1996). Ion-pair reversed phase high-performance liquid chromatography of algal chlorophylls. Journal of Chromatography, 738, 285–289.

    CAS  Google Scholar 

  • Garrido, J. L., & Zapata, M. (1997). Reversed-phase high-performance liquid chromatography of mono- and divinyl chlorophyll forms using pyridine-containing mobile phases and polymeric octadecylsilica column. Chromatographia, 44, 43–49.

    CAS  Google Scholar 

  • Garrido, J. L., Otero, J., Maestro, M. A., & Zapata, M. (2000). The main nonpolar chlorophyll c from Emiliana huxleyi (Prymnesiophyceae) is a chlorophyll c2-monogalactosyldiacylglyceride ester: A mass spectrometry study. Journal of Phycology, 36, 497–505.

    CAS  PubMed  Google Scholar 

  • Garrido, J. L., Airs, R., Rodríguez, F., Van Heukelem, L., & Zapata, M. (2011). New HPLC separation techniques. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography (pp. 165–194). New York: Cambridge University Press.

    Google Scholar 

  • Gavalás-Olea, A., Garrido, J. L., Riobó, P., Álvarez, S., & Vaz, B. (2018). Mass spectrometry of algal chlorophyll c compounds. Current Organic Chemistry, 22, 836–841.

    Google Scholar 

  • Hagerthey, S. E. (2006). Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. Journal of Phycology, 42, 1125–1136.

    CAS  Google Scholar 

  • Heyward, A. J. (1991). Chlorophyll extraction from marine microalgae: verification and extension of an improved technique. Australian Society for Phycology and Aquatic Botany, 9.

    Google Scholar 

  • Honeywill, C., Paterson, D. M., & Hagerthy, S. E. (2002). Determination of microphytobenthic biomass using pulse-modulated minimum fluorescence. European Journal of Phycology, 37, 485–492.

    Google Scholar 

  • Hynninen, P. H. (2018). Mass spectrometric structural investigations of chlorophylls a and b derivatives Including the Willstätter Allomerization Products. Current Organic Chemistry, 22, 885–889.

    CAS  Google Scholar 

  • Hynninen, P. H., & Elfolk, N. (1973). Chlorophylls. I. Separation and isolation of chlorophylls a and b by multiple liquid-liquid partition. Acta Chemica Scandinavica, 27, 1463–1477.

    CAS  Google Scholar 

  • Jaime, L., Mendiola, J. A., Ibáñez, E., Martin-Álvarez, P. J., Cifuentes, A., Reglero, G., et al. (2007). β-Carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement. Journal of Agriculture and Food Chemistry, 55, 10585–10590.

    CAS  Google Scholar 

  • Jayaraman, S., Knuth, M. L., Cantwell, M., & Santos, A. (2011). High performance liquid chromatographic analysis of phytoplankton pigments using a C16-Amide column. Journal of Chromatography, 1218, 3432–3438.

    CAS  PubMed  Google Scholar 

  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants and natural phytoplankton. Biochem Physiol Pflanz, 165, 191–194.

    Google Scholar 

  • Jeffrey, S. W., Mantoura, R. F. C, & Wright, S. W. (Eds.). (1997). Phytoplankton pigments in oceanography: Guidelines to modern methods. Paris, France: UNESCO.

    Google Scholar 

  • Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13, 105–113.

    CAS  PubMed  Google Scholar 

  • Laitalainen, T., Pitkanen, J., & Hynninen, P., (1990). Diastereoselective 132-hydroxylation of chlorophyll a with SeO2. In: IUPAC (Ed.), Abstracts of the 8th International IUPAC Conference on Organic Synthesis, Helsinki, (p. 246).

    Google Scholar 

  • Latasa, M. (2014). A simple method to increase sensitivity for RP-HPLC phytoplankton pigment analysis. Limnology and Oceanography: Methods, 12, 46–53.

    Google Scholar 

  • Macías-Sánchez, M. C., Mantell, C., Rodríguez, M., Martínez de La Ossa, E., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66, 245–251.

    Google Scholar 

  • Macías-Sánchez, M. C., Mantell, C., Rodríguez, M., Martínez de La Ossa, E., Lubián, L. M., & Montero, O. (2007). Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. Journal of Supercritical Fluids, 39, 323–329.

    Google Scholar 

  • Macías-Sánchez, M. D., Mantell Serrano, C., Rodríguez, Rodríguez M., Martínez de la Ossa, E., Lubián, L. M., & Montero, O. (2008). Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. Journal of Separation Science, 31, 1352–1362.

    PubMed  Google Scholar 

  • Macías-Sánchez, M. D., Mantell, C., Rodríguez, M., Martínez de la Ossa, E., Lubián, L. M., & Montero, O. (2009). Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta, 77, 948–952.

    PubMed  Google Scholar 

  • Mantoura, R. F. C., & Llewellyn, C. A. (1983). The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high performance liquid chromatography. Analytica Chimica Acta, 151, 297–314.

    CAS  Google Scholar 

  • Maroneze, M. M., Zepka, L. Q., Lopes, E. J., Pérez-Gálvez, A., & Roca, M. (2019). Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of scenedesmus obliquus. Antioxidants 8(12), 600.

    Google Scholar 

  • Montero, O., Macías-Sánchez, M. D., Lama, C. M., Lubián, L. M., Mantell, C., Rodríguez, M., et al. (2005). Supercritical CO2 extraction of β-carotene from a marine strain of the cyanobacterium Synechococcus species. Journal of Agricultural and Food Chemistry, 53, 9701–9707.

    CAS  Google Scholar 

  • Neveux, J. (1988). Extraction of chlorophylls from marine phytoplankton. Verhandlungen des Internationalen Verein Limnologie, 23, 928–932.

    Google Scholar 

  • Neveux, J., Seppälä, J., & Dandonneau, Y. (2011). Multivariate analysis of extracted pigments using spectrophotometric and spectrofluorometric methods. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography (pp. 343–372). New York: Cambridge University Press.

    Google Scholar 

  • Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology, 135, 128–136.

    CAS  PubMed  Google Scholar 

  • Ota, M., Watanabe, H., Kato, Y., Watanabe, M., Sato, Y., Smith, R. L., et al. (2009). Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. Journal of Separation Science, 32, 2327–2335.

    CAS  PubMed  Google Scholar 

  • Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., et al. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46, 59–67.

    CAS  Google Scholar 

  • Pennington, F. C., Strain, H. H., Svec, W. A., & Katz, J. J. (1964). Preparation and properties of pyrochlorophyll a, methyl pyrochlorophyllide a, pyropheophytin a, and methylpyropheophorbide a derived from chlorophyll by decarbomethoxylation. Journal of the American Chemical Society, 86, 1418–1426.

    CAS  Google Scholar 

  • Porra, R. J., Thompson, W. A., & Kreidemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochimica et Biophysica Acta, 975, 384–394.

    CAS  Google Scholar 

  • Porra, R. J. (2006). Spectrometric assays for plant, algal and bacterial chlorophyllsin. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer 542 (Eds.), Chlorophylls and bacteriochlorophylls (pp. 95-107). Springer: The Netherlands.

    Google Scholar 

  • Richards, F. A., & Thompson, T. G. (1952). The estimation and characterisation of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, 11, 156–172.

    CAS  Google Scholar 

  • Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89, 27–41.

    CAS  PubMed  Google Scholar 

  • Rowan, K. S. (1989). Photosynthetic pigments of algae. New York: Cambridge University Press.

    Google Scholar 

  • Roy, S., Wright, S. W., & Jeffrey, S. W. (2011a). Phytoplankton cultures for standard pigments and their suppliers. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography (pp. 653–657). New York: Cambridge University Press.

    Google Scholar 

  • Roy, S., Llewellyn, C. A., Egeland, E. S., & Johnsen, G. (2011b). Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. New York: Cambridge University Press.

    Google Scholar 

  • Santoyo, S., Plaza, M., Jaime, L., Ibañez, E., Reglero, G., & Señorans, F. J. (2010). Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58, 8522–8527.

    CAS  Google Scholar 

  • Sanz, N., Garcia-Blanco, A., Gavalás-Olea, A., Loures, P., & Garrido, J. L. (2015). Phytoplankton pigment biomarkers: HPLC separation using a pentafluorophenyloctadecyl silica column. Meth. Ecol. Evol., 6, 1199–1209.

    Google Scholar 

  • Sartory, D. P., & Grobbelaas, J. U. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114, 177–187.

    CAS  Google Scholar 

  • Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), chlorophylls and bacteriochlorophylls (pp. 1–26). The Netherlands: Springer.

    Google Scholar 

  • Schumann, R., Häubner, N., Klausch, S., & Karsten, U. (2005). Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades Int. Biodeterioration and Biodegradation, 55, 213–222.

    CAS  Google Scholar 

  • Schwartz, S. J., & Lorenzo, T. V. (1990). Chlorophylls in foods. Critical Reviews in Food Science and Nutrition, 29, 1–17.

    CAS  PubMed  Google Scholar 

  • SCOR Working Group 156. (2019). Active Chlorophyll fluorescence for autonomous measurements of global marine primary productivity, viewed 5 May 2019, https://scor-int.org/group/156/.

  • Shimoda, Y., Ito, H., & Tanaka, A. (2016). Arabidopsis STAY-GREEN, Mendel’s Green cotyledon gene, encodes magnesium-dechelatase. Plant Cells, 28, 2147–2160.

    CAS  Google Scholar 

  • Sievers, G., & Hynninen, P. (1977). Thin-layer chromatography of chlorophylls and their derivatives on cellulose layer. Journal of Chromatography, 134, 359–364.

    CAS  PubMed  Google Scholar 

  • Simon, D., & Helliwell, S. (1998). Extraction and quantification of chlorophyll a from freshwater green algae. Water Research, 32, 2220–2223.

    CAS  Google Scholar 

  • Suzuki, R., & Ishimaru, T. (1990). An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. Journal of the Oceanographical Society of Japan, 46, 190–194.

    CAS  Google Scholar 

  • Suzuki, R., Takahashi, M., Furuya, K., & Ishimaru, T. (1993). Simplified technique for the rapid determination of phytoplankton pigments by reverse-phase high-performance liquid chromatography. Journal of Oceanography, 49, 571–580.

    CAS  Google Scholar 

  • Suzuki, Y., Amano, T., & Shioi, Y. (2006). Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiology, 140, 716–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, K., Kamimura, A., & Hooker, S. B. (2015). Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) technique. Marine Chemistry, 176, 96–109.

    CAS  Google Scholar 

  • UNESCO. (1966). Determination of photosynthetic pigments in sea-water, viewed 1 April 2019, https://unesdoc.unesco.org/ark:/48223/pf0000071612.

  • Van Heukelem, L., & Thomas, C. S. (2001). Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 23, 31–49.

    Google Scholar 

  • Viera, I., Roca, M., & Pérez-Gálvez, A. (2018). Mass spectrometry of non-allomerized chlorophylls a and b derivatives from plants. Current Organic Chemistry, 22, 842–876.

    CAS  Google Scholar 

  • Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C., Llewellyn, C. A., Bjsrn-Land, T., Repeta, D., & Welschmeyer, N. (1991). Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 77, 183–196.

    Google Scholar 

  • Wright, S. W., Jeffrey, S. W., & Mantoura, R. F. C. (1997). Evaluation of methods and solvents for pigment extraction. In S. W. Jeffrey, R. F. C. Mantoura, & S. W. Wright (Eds.), Phytoplankton pigments in oceanography: Guidelines to modern methods (pp. 261–282). Paris: UNESCO Publishing.

    Google Scholar 

  • Zapata, M., Rodríguez, F., & Garrido, J. L. (2000). Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195, 29–45.

    CAS  Google Scholar 

  • Zapata, M., Edvardsen, B., Rodríguez, F., Maestro, M. A., & Garrido, J. L. (2001). Chlorophyll c2-monogalactosyldiacylglyceride ester (chl c2-MGDG). A novel marker pigment for Chrysochromulina species (Haptophyta). Marine Ecology Progress Series, 219, 85–98.

    CAS  Google Scholar 

  • Zbinden, M. D. A., Sturm, B. S. M., Nord, R. D., Carey, W. J., Moore, D., Shinogle, H., et al. (2013). Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnology and Bioengineering, 110, 1605–1615.

    PubMed  Google Scholar 

  • Zhang, J., Liu, D., Cao, P., Wang, Y., Keesing, Y. K., Li, J., & Chen, L. (2016). A highly sensitive method for analyzing marker phytoplankton pigments: Ultra‐high‐performance liquid chromatography‐tandem triple quadrupole mass spectrometry. Limnology and Oceanography: Methods, 14, 623–636.

    Google Scholar 

  • Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., & Wu, H. F. (2013). Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Marine Drugs, 11, 1644–1655.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT-EU, Spanish and European Government, grant number RTI2018-095415-B-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viera, I., Roca, M. (2020). Analytical Protocols in Chlorophyll Analysis. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_6

Download citation

Publish with us

Policies and ethics