Skip to main content

Carotenoid Overproduction in Microalgae: Biochemical and Genetic Engineering

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Carotenoids are one the most frequently coloured molecules encountered in our environment. Beside their colouring effect, carotenoids are famous for their photoprotection and antioxidant properties. Because carotenoids conserve their properties in vitro, the interest for these natural molecules increased. To satisfy the growing demand for carotenoids, new sources are searched and microalgae emerged as organisms with a very high potential. Using the most recent publications, we established that the production of carotenoids by microalgae is a tailor-made process requiring the proper biological and environmental factors. The optimization of the biotechnological processes aiming at producing carotenoids from microalgae requires a deeper knowledge in the regulation of the carotenoid biosynthetic pathways, that might be used to engineer microalgal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, K., Hattori, H., & Hirano, M. (2007). Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella sriolata var. multistriata. Food Chemistry, 100, 656–661.

    CAS  Google Scholar 

  • Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–66.

    CAS  PubMed  Google Scholar 

  • Aburai, N., Sumida, D., & Abe, K. (2015). Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Research, 8, 30–36.

    Google Scholar 

  • Ajayan, K. V., Selvaraju, M., & Thirugnanamoorthy, K. (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy, 47, 436–441.

    CAS  Google Scholar 

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. Rome: FAO.

    Google Scholar 

  • Alonso-Alvarez, C., García-De Blas, E., & Mateo, R. (2018). Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges. The Journal of Experimental Biology, 221, jeb185074.

    Google Scholar 

  • Alsenani, F., Wass, T. J., Ma, R., Eltanahy, E., Netzel, M. E., & Schenk, P. M. (2019). Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae. Algal Research, 37, 320–335.

    Google Scholar 

  • Altincicek, B., Kovacs, J., & Gerardo, N. (2011). Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biology Letters, 8, 253–257.

    PubMed  PubMed Central  Google Scholar 

  • Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine drugs, 12, 128–152.

    PubMed  PubMed Central  Google Scholar 

  • Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Lei, B., et al. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59, 1880–1902.

    CAS  PubMed  Google Scholar 

  • Anahas, A. M. P., & Muralitharan, G. (2019). Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production. Renewable Energy, 130, 749–761.

    CAS  Google Scholar 

  • Anto, S., Karpagam, R., Renukadevi, P., Jawaharraj, K., & Varalakshmi, P. (2019). Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle. Fuel, 255.

    Google Scholar 

  • Anunciato, T. P., & Da Rocha Filho, P. A. (2012). Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. Journal of Cosmetic Dermatology, 11, 51–54.

    Google Scholar 

  • Ao, X., & Kim, I. H. (2019). Effects of astaxanthin produced by Phaffia rhodozyma on growth performance, antioxidant activities, and meat quality in Pekin ducks. Poultry Science, 98, 4954–4960.

    CAS  PubMed  Google Scholar 

  • Arab, M., Hosseini, S. M., Nayebzadeh, K., Khorshidian, N., Yousefi, M., Razavi, S. H., et al. (2019). Microencapsulation of microbial canthaxanthin with alginate and high methoxyl pectin and evaluation the release properties in neutral and acidic condition. International Journal of Biological Macromolecules, 121, 691–698.

    CAS  PubMed  Google Scholar 

  • Azadeh, F. D., Sirous, E., Abolfazl, S., & Alireza, P. (2017). Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochemical Engineering Journal, 125, 56–64.

    Google Scholar 

  • Azizi, M., Moteshafi, H., & Hashemi, M. (2020). Distinctive nutrient designs using statistical approach coupled with light feeding strategy to improve the Haematococcus pluvialis growth performance and astaxanthin accumulation. Bioresource Technology, 300, 122594.

    CAS  PubMed  Google Scholar 

  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65, 1229–1240.

    CAS  PubMed  Google Scholar 

  • Ben Amor-Ben Ayed, H., Taidi, B., Ayadi, H., Pareau, D., & Stambouli, M. (2015). Effect of magnesium ion concentration in autotrophic cultures of Chlorella vulgaris. Algal Research, 9, 291–296.

    Google Scholar 

  • Ben-Amotz, A., Katz, A., & Avron, M. (1982). Accumulation of β-carotene in halotolerant alge: Purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 18, 529–537.

    CAS  Google Scholar 

  • Ben-Amotz, A., Gressel, J., & Avron, M. (1987). Massive accumulation of phytoene induced by norflurazon in Dunaliella bardawil (Chlorophyceae) prevents recovery from photoinhibition. Journal of Phycology, 23, 176–181.

    CAS  Google Scholar 

  • Ben-Amotz, A., Lers, A., & Avron, M. (1988). Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiology, 86, 1286–1291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennoun, P. (2001). Chlororespiration and the process of carotenoid biosynthesis. Biochimica-et-Biophysica-Acta, 1506, 133–142.

    Google Scholar 

  • Bertrand, M. (2010). Carotenoid biosynthesis in diatoms. Photosynthesis Research, 106, 89–102.

    Google Scholar 

  • Bohne, F., & Linden, H. (2002). Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta - Gene Structure and Expression, 1579, 26–34.

    Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialization. Journal of Applied Phycology, 25, 743–756.

    Google Scholar 

  • Boussiba, S., Bing, W., Zarka, A., & Chen, F. (1999). Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnology Letters, 21, 601–604.

    CAS  Google Scholar 

  • Breitenbach, J., Misawa, N., Kajiwara, S., & Sandmann, G. (1996). Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiology Letters, 140, 241–246.

    CAS  PubMed  Google Scholar 

  • Britton, G., Liaanen-Jensen, S., & Pfander, H. (2004). Carotenoids. Birkhäuser: Basel.

    Google Scholar 

  • Britton, G., Liaanen-Jensen, S., & Pfander, H. (2009). Carotenoids. Nutrition and health. Basel: Birkhäuser.

    Google Scholar 

  • Capa, W., Paniagua-Michel, J., & Olmos-Soto, J. (2009). The biosynthesis and accumulation of β-carotene in Dunaliella salina proceed via the glyceraldehyde 3-phosphate/pyruvate pathway. Natural Product Research, 23, 1021–1028.

    Google Scholar 

  • Cezare-Gomes, E. A., Mejia-da-Silva, L. D. C., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & De Carvalho, J. C. M. (2019). Potential of Microalgae Carotenoids for Industrial Application. Applied Biochemistry and Biotechnology.

    Google Scholar 

  • Chamovitz, D., Sandmann, G., & Hirschberg, J. (1993). Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. Journal of Biological Chemistry, 268, 17348–17353.

    CAS  PubMed  Google Scholar 

  • Chan, M.-C., Ho, S.-H., Lee, D.-J., Chen, C.-Y., Huang, C.-C., & Chang, J.-S. (2013). Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 78, 24–31.

    CAS  Google Scholar 

  • Chen, G., Wang, B., Han, D., Sommerfeld, M., Lu, Y., Chen, F., et al. (2015). Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). The Plant Journal, 81, 95–107.

    CAS  PubMed  Google Scholar 

  • Chen, J.-H., Wei, D., & Lim, P.-E. (2020). Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. Bioresource Technology, 295, 122242.

    CAS  PubMed  Google Scholar 

  • Cherdchukeattisak, P., Fraser, P., Purton, S., & Brocklehurst, T. (2018). Detection and enhancement of ketocarotenoid accumulation in the newly isolated sarcinoid green microalga Chlorosarcinopsis PY02. Biology, 7, 17.

    PubMed Central  Google Scholar 

  • Choi, S. K., Harada, H., Matsuda, S., & Misawa, N. (2007). Characterization of two β-carotene ketolases, CrtO and CrtW, by complementation analysis in Escherichia coli. Applied Microbiology and Biotechnology, 75, 1335–1341.

    CAS  PubMed  Google Scholar 

  • Christaki, E., Bonos, E., Giannenas, I., & Florou-Paneri, P. (2013). Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, 93, 5–11.

    CAS  PubMed  Google Scholar 

  • Chronopoulou, L., dal Bosco, C., di Caprio, F., Prosini, L., Gentili, A., Pagnanelli, F., et al. (2019). Extraction of carotenoids and fat-soluble vitamins from Tetradesmus obliquus microalgae: An optimized approach by using supercritical CO2. Molecules, 24, 2581.

    CAS  PubMed Central  Google Scholar 

  • Coesel, S., Oborník, M., Varela, J., Falciatore, A., & Bowler, C. (2008). Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS ONE, 3, e2896.

    PubMed  PubMed Central  Google Scholar 

  • Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs, 9, 1607–1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couso, I., Vila, M., Rodriguez, H., Vargas, M. A., & Léon, R. (2011). Overexperssion of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnology Progress, 27, 54–60.

    CAS  PubMed  Google Scholar 

  • Cuaresma, M., Bejarano, C., Forján, E., & Vílchez, C. (2011). Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems. Journal of Industrial Microbiology and Biotechnology, 38, 167–177.

    CAS  PubMed  Google Scholar 

  • Cui, H. L., Yu, X. N., Wang, Y., Cui, Y. L., Li, X. Q., Liu, Z. P., et al. (2013). Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genomics, 14, 457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Yu, X., Wang, Y., Cui, Y., Li, X., Liu, Z., et al. (2014). Gene cloning and expression profile of a novel carotenoid hydroxylase (CYP97C) from the green alga Haematococcus pluvialis. Journal of Applied Phycology, 26, 91–103.

    CAS  Google Scholar 

  • Cui, J. Y., Diao, J. J., Sun, T., Shi, M. L., Liu, L. S., Wang, F. Z., Chen, L. et al. (2018). C-13 metabolic flux analysis of enhanced lipid accumulation modulated by ethanolamine in Crypthecodinium cohnii. Frontiers in Microbiology, 9.

    Google Scholar 

  • Cui, H., Ma, H., Cui, Y., Zhu, X., Qin, S., & Li, R. (2019). Cloning, identification and functional characterization of two cytochrome P450 carotenoids hydroxylases from the diatom Phaeodactylum tricornutum. Journal of Bioscience and Bioengineering, 128, 755–765.

    PubMed  Google Scholar 

  • Cunningham, F. X., Lafond, T. P., & Gantt, E. (2000). Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. Journal of Bacteriology, 182, 5841–5848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cvejić, J. H., & Rohmer, M. (2000). CO2 as main carbon source for isoprenoid biosynthesis via the mevalonate-independent methylerythritol 4-phosphate route in the marine diatoms Phaeodactylum tricornutum and Nitzschia ovalis. Phytochemistry, 53, 21–28.

    PubMed  Google Scholar 

  • Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolites. Philosophical Transactions of the Royal Society of London. B: Biology, 369, #20130243.

    Google Scholar 

  • Del Campo, J. A., Moreno, J., Rodriguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76, 51–59.

    PubMed  Google Scholar 

  • Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrezo, M. G. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophya). Applied Microbiology and Biotechnology, 64, 848–854.

    PubMed  Google Scholar 

  • Del Campo, J. A., Garcia-Gonzalez, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology, 74, 1163–1174.

    CAS  PubMed  Google Scholar 

  • Delgado-Vargas, F., Jimenez, A. R., & Paredes-Lopez, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betelains—Characteristics, biosynthesis, natural processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289.

    CAS  PubMed  Google Scholar 

  • Dembitsky, V. M., & Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46, 328–375.

    CAS  PubMed  Google Scholar 

  • Derwenskus, F., Metz, F., Gille, A., Schmid-Staiger, U., Briviba, K., Schliessmann, U., et al. (2019). Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids. Global Change Biology Bioenergy, 11, 335–344.

    CAS  Google Scholar 

  • Dineshkumar, R., Dhanarajan, G., Dash, S. K., & Sen, R. (2015). An advanced hybrid medium optimization strategy for the enhanced productivity of lutein in Chlorella minutissima. Algal Research, 7, 24–32.

    Google Scholar 

  • Disch, A., Schwender, J., Müller, C., Lichtenthaler, H. K., & Rohmer, M. (1998). Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochemical Journal, 333, 381–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bocanegra, A. R., Legarreta, I. G., Jeronimo, F. M., & Campocosio, A. T. (2004). Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 92, 209–214.

    CAS  PubMed  Google Scholar 

  • Domı́nguez-Bocanegra, A. R., Guerrero Legarreta, I., Martinez Jeronimo, F., & Tomasini Campocosio, A. (2004). Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 92, 209–214.

    Google Scholar 

  • Drew, K. M., & Ross, R. (1965). Some generic names in the bangiophycidae. Taxon, 14, 93–99.

    Google Scholar 

  • Dring, M. J. (2005). Stress resistance and disease resistance in seaweeds: The role of reactive oxygen metabolism. In: Advances in Botanical Research. Academic Press.

    Google Scholar 

  • Duarte, J. H., & Costa, J. A. V. (2018). Blue light emitting diodes (LEDs) as an energy source in Chlorella fusca and Synechococcus nidulans cultures. Bioresource Technology, 247, 1242–1245.

    CAS  PubMed  Google Scholar 

  • Durmaz, Y., Donato, M., Monteiro, M., Gouveia, L., Nunes, M. L., Gama Pereira, T., Gökpınar, Ş., et al. (2009). Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquaculture International, 17, 391–399.

    Google Scholar 

  • Edelshtain, V., Peled, A., Tzameret, A., Pri Chen, S., Ziv, H., Derazne, E., Harats, D., et al. (2019). Long-term treatment with 9-cis-β-carotene rich alga Dunaliella bardawil ameliorates photoreceptor degeneration in a mouse model of retinoid cycle defect. Algal Research, 43, 101607.

    Google Scholar 

  • Eilers, U., Dietzel, L., Breitenbach, J., Buchel, C., & Sandmann, G. (2016). Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. Journal of Plant Physiology, 192, 64–70.

    CAS  PubMed  Google Scholar 

  • Engelmann, N. J., Clinton, S. K., & Erdman, J. W. JR (2011). Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Advances in Nutrition, 2, 51–61.

    Google Scholar 

  • Esatbeyoglu, T., & Rimbach, G. (2017). Canthaxanthin: From molecule to function. Molecular Nutrition & Food Research, 61, art#1600469.

    Google Scholar 

  • Fabregas, J., Dominguez, A., Regueiro, M., Maseda, A., & Otero, A. (2000). Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis Applied Microbiology and Biotechnology, 53, 530–535.

    Google Scholar 

  • Fan, L., Vonshak, A., Zarka, A., & Boussiba, S. (1998). Does astaxanthin protect Haematococcus against light damage? Zeitschrift fur Naturforschung, 53 c, 93–100.

    Google Scholar 

  • Fernández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27–40.

    Google Scholar 

  • Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M. H., et al. (2017). Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology, 241, 175–183.

    CAS  PubMed  Google Scholar 

  • Fraser, P. D., Miura, Y., & Misawa, N. (1997). In vitro characterization of astaxanthin biosynthetic enzymes. Journal of Biological Chemistry, 272, 6128–6135.

    CAS  PubMed  Google Scholar 

  • Fraser, P. D., Shimada, H., & Misawa, N. (1998). Enzymic confirmation of reactions involved in routes of astaxanthin formation, elucidated using a direct substrate in vitro assay. European Journal of Biochemistry, 252, 229–236.

    CAS  PubMed  Google Scholar 

  • Freitas, J. V., & Gaspar, L. R. (2016). In vitro photosafety and efficacy screening of apigenin, chrysin and β-carotene for UVA and VIS protection. European Journal of Pharmaceutical Sciences, 89, 146–153.

    CAS  PubMed  Google Scholar 

  • Fučíková, K., & Lewis, L. (2012). Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea, 12, 83–93.

    Google Scholar 

  • Galarza, J. I., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O., & Henríquez, V. (2018). Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research, 31, 291–297.

    Google Scholar 

  • Gao, Z., Meng, C., Gao, H., Li, Y., Zhang, X., Xu, D., et al. (2013). Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3). Indian Journal of Biochemistry & Biophysics, 50, 548–553.

    CAS  Google Scholar 

  • Gao, Z., Meng, C., Chen, Y. C., Ahmed, F., Mangott, A., Schenk, P. M., et al. (2015). Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. Journal of Applied Phycology, 27, 1853–1860.

    CAS  Google Scholar 

  • Gardner, R. D., Lohman, E. J., Cooksey, K. E., Gerlach, R., & Peyton, B. M. (2013). Cellular cycling, carbon utilization, and photosynthetic oxygen production during bicarbonate-induced triacylglycerol accumulation in a Scenedesmus sp. Energies, 6, 6060–6076.

    Google Scholar 

  • Garg, S., Afzal, S., Elwakeel, A., Sharma, D., Radhakrishnan, N., Dhanjal, J. K., et al. (2019). Marine carotenoid fucoxanthin possesses anti-metastasis activity: Molecular evidence. Marine Drugs, 17, 338.

    CAS  PubMed Central  Google Scholar 

  • Gateau, H., Solymosi, K., Marchand, J., & Schoefs, B. (2017). Carotenoids of microalgae used in food industry and medicine. Mini-Review in Medicinal Chemistry, 17, 1140–1172.

    CAS  Google Scholar 

  • Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2015). Microalgal rainbow colours for nutraceutical and pharmaceutical applications. In: B. Bahadur, M. V. Rajam, L. Sahijram, & K. V. Krishnamurthy (Eds.), Plant biology and biotechnology. New Delhi: Springer India.

    Google Scholar 

  • Giannelli, L., Yamada, H., Katsuda, T., & Yamaji, H. (2015). Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis. Journal of Bioscience and Bioengineering, 119, 345–350.

    CAS  PubMed  Google Scholar 

  • Giménez, P. J., Fernández-López, J. A., Angosto, J. M., & Obón, J. M. (2015). Comparative thermal degradation patterns of natural yellow colorants used in foods. Plant Foods for Human Nutrition, 70, 380–387.

    PubMed  Google Scholar 

  • Göksan, T., Ak, İ., & KıLıÇ, C. (2011). Growth characteristics of the alga Haematococcus pluvialis Flotow as affected by nitrogen source, vitamin, light and aeration. Turkish Journal of Fisheries and Aquatic Sciences, 11, 377–383.

    Google Scholar 

  • Gonçalves, V. D., Fagundes-Klen, M. R., Trigueros, D. E. G., Schuelter, A. R., Kroumov, A. D., & Módenes, A. N. (2019). Combination of light emitting diodes (LEDs) for photostimulation of carotenoids and chlorophylls synthesis in Tetradesmus sp. Algal Research, 43, 101649.

    Google Scholar 

  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34, 1396–1412.

    CAS  PubMed  Google Scholar 

  • Grama, B. S., Chader, S., Khelifi, D., Stenuit, B., Jeffryes, C., & Agathos, S. N. (2014). Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy, 69, 265–275.

    CAS  Google Scholar 

  • Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., et al. (2013). Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function, 4, 144–152.

    CAS  Google Scholar 

  • Grčević, M., Kralik, Z., Kralik, G., & Galović, O. (2019). Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega-3 eggs. Journal of the Science of Food and Agriculture, 99, 2292–2299.

    PubMed  Google Scholar 

  • Gu, W., Xie, X., Gao, S., Zhou, W., Pan, G., & Wang, G. (2013). Comparison of different cells of Haematococcus pluvialis reveals an extensive acclimation mechanism during its agin process: From a perspective of photosynthesis. PlosOne, 8, e67028.

    CAS  Google Scholar 

  • Gu, W. H., Li, H., Zhao, P. P., Yu, R. X., Pan, G. H., Gao, S., Xie, X. J., et al. (2014). Quantitative proteomic analysis of thylakoid from two microalgae (Haematococcus pluvialis and Dunaliella salina) reveals two different high light-responsive strategies. Scientific Reports, 4.

    Google Scholar 

  • Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9, 625–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guiheneuf, F., & Stengel, D. B. (2015). Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Research-Biomass Biofuels and Bioproducts, 10, 152–163.

    Google Scholar 

  • Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48, 1057–1063.

    PubMed  Google Scholar 

  • Gwak, Y., Hwang, Y. S., Wang, B. B., Kim, M., Jeong, J., Lee, C. G., et al. (2014). Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. Journal of Experimental Botany, 65, 4317–4334.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen, C., Grünewald, K., Schmidt, S., & Müller, J. (2000). Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. European Journal of Phycology, 35, 75–82.

    Google Scholar 

  • Han, D., Li, Y., & Hu, Q. (2013). Astaxanthin in microalgae: Pathways, functions and biotechnological implications. ALGAE, 28, 131–147.

    CAS  Google Scholar 

  • Harker, M., & Hirschberg, J. (1997). Biosynthesis of ketocarotenoids in transgenic cyanobacteria expression the algal gene for β-C-4-oxygenase, crtO. FEBS Letters, 404, 129–134.

    CAS  PubMed  Google Scholar 

  • Haugan, J. A., & Liaaen Jensen, S. (1994). Isolation and characterisation of four allelic (6’S)-isomers of fucoxanthin. Tetrahedron Letters, 35, 2245–2248.

    Google Scholar 

  • He, P., Duncan, J., & Barber, J. (2007). Astaxanthin accumulation in the green alga Haematococcus pluvialis: Effects of cultivation parameters. Journal of Integrative Plant Biology, 49, 447–451.

    CAS  Google Scholar 

  • Hegemann, P. (2008). Algal sensory photoreceptors. Annual Review of Plant Biology, 59, 167–89.

    Google Scholar 

  • Hemilä, H. 2018. Effect of β-carotene supplementation on the risk of pneumonia is heterogeneous in males: Effect modification by cigarette smoking. Journal of Nutritional Science and Vitaminology, 64, 374–378.

    Google Scholar 

  • Heydarizadeh, P., Poirier, I., Loizeau, D., Ulmann, L., Mimouni, V., Schoefs, B., et al. (2013). Plastids of marine phytoplankton produce bioactive pigments and lipids. Marine Drugs, 11, 3425–3471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heydarizadeh, P., Boureba, W., Zahedi, M., Huang, B., Moreau, B., Lukomska, E., et al. (2017). Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160396.

    Google Scholar 

  • Heydarizadeh, P., Veidl, B., Huang, B., Lukomska, E., Wielgosz-Collin, G., Couzinet-Mossion, A., et al. (2019). Carbon orientation in the diatom Phaeodactylum tricornutum: The effects of carbon limitation and photon flux density. Frontiers in Plant Science, 10, 471.

    PubMed  PubMed Central  Google Scholar 

  • Higuera-Ciapara, I., Félix-Valenzuela, L., & Goycoolea, F. M. (2006). Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46, 185–196.

    CAS  PubMed  Google Scholar 

  • Hong, M.-E., Hwang, S. K., Chang, W. S., Kim, B. W., Lee, J., & Sim, S. J. (2015). Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction. Applied Microbiology and Biotechnology, 99, 5203–5215.

    CAS  PubMed  Google Scholar 

  • Hsueh, H. T., Chu, H., & Yu, S. T. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66, 878–886.

    CAS  PubMed  Google Scholar 

  • Hu, C., Cui, D., Sun, X., Shi, J., Song, L., Li, Y., et al. (2019). Transcriptomic analysis unveils survival strategies of autotrophic Haematococcus pluvialis against high light stress. Aquaculture, 513, 734430.

    CAS  Google Scholar 

  • Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research, 46, 101768.

    Google Scholar 

  • Huang, J.-C., Wang, Y., Sandmann, G., & Chen, F. (2006). Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 71, 473–479.

    CAS  PubMed  Google Scholar 

  • Huang, W., Ye, J., Zhang, J., Lin, Y., He, M., & Huang, J. (2016). Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Research, 17, 236–243.

    Google Scholar 

  • Huang, W., Lin, Y., He, M., Gong, Y., & Huang, J. (2018). Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. Journal of Agricultural and Food Chemistry, 66, 891–897.

    CAS  PubMed  Google Scholar 

  • Jahnke, L. S. (1999). Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. Journal-of-Photochemistry-and-Photobiology-B-Biology, 48, 68–74.

    Google Scholar 

  • Jaswir, I., Noviendri, D., Hasrini, R., & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research, 5, 7119–7131.

    CAS  Google Scholar 

  • Jiang, L., Pei, H., Hu, W., Han, F., Zhang, L., & Hou, Q. (2015). Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresource Technology, 197, 178–184.

    CAS  PubMed  Google Scholar 

  • Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6, 4607–4638.

    Google Scholar 

  • Kajiwara, S., Kakizono, T., Saito, T., Kondo, K., Ohtani, T., Nishio, N., et al. (1995). Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis and astaxanthin synthesis in Escherichia coli. Plant Molecular Biology, 29, 343–352.

    CAS  PubMed  Google Scholar 

  • Kakizono, T., Kobayashi, M., & Nagai, S. (1992). Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 74, 403–405.

    CAS  Google Scholar 

  • Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2007). Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Applied Microbiology and Biotechnology, 74, 987–994.

    CAS  PubMed  Google Scholar 

  • Kianianmomeni, A. (2014). Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri. BMC Genomics, 15, 764.

    Google Scholar 

  • Kim, J., Smith, J. J., Tian, L., & Dellapenna, D. (2009). The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant and Cell Physiology, 50, 463–479.

    CAS  PubMed  Google Scholar 

  • Kim, S., Jung, Y.-J., Kwon, O.-N., Cha, K. H., Um, A. B.-H., Chung, D., et al. (2012a). A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology, 166, 1843–1855.

    CAS  PubMed  Google Scholar 

  • Kim, S. M., Kang, S.-W., Kwon, O.-N., Chung, D., & Pan, C.-H. (2012b). Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological Chemistry, 55, 477–483.

    CAS  Google Scholar 

  • Kirk, J. T. O. (1988). Solar heating of water bodies as influenced by their inherent optical properties. Journal of Geophysical Research: Atmospheres, 93, 10897–10908.

    Google Scholar 

  • Kopecky, J., Schoefs, B., Loest, K., Stys, D., & Pulz, O. (2000). Microalgae as a source for secondary carotenoid production: A screening study. Algological Studies, 98, 153–168.

    Google Scholar 

  • Kuczynska, P., & Jemiola-Rzeminska, M. (2017). Isolation and purification of all-trans diadinoxanthin and all-trans diatoxanthin from diatom Phaeodactylum tricornutum. Journal of Applied Phycology, 29, 79–87.

    CAS  PubMed  Google Scholar 

  • Lagarde, D., Beuf, L., & Vermaas, W. (2000). Increased production of zeaxanthin and the other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Applied and Environmental Microbiology, 66, 64–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laje, K., Seger, M., Dungan, B., Cooke, P., Polle, J., & Holguin, F. O. (2019). Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone. Marine Drugs, 17, 187.

    Google Scholar 

  • Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M., de Vos, R. C. H., et al. (2010). Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering, 106, 638–648.

    CAS  PubMed  Google Scholar 

  • Langi, P., Kiokias, S., Varzakas, T., & Proestos, C. (2018). Carotenoids: From plants to food and feed industries. In: C. Barreiro, & J.-L. Barredo (Eds.), Microbial carotenoids: Methods and Protocols. New York, NY: Springer New York.

    Google Scholar 

  • Le Goff, M., le Ferrec, E., Mayer, C., Mimouni, V., Lagadic-Gossmann, D., Schoefs, B., et al. (2019). Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie, 167, 106–118.

    PubMed  Google Scholar 

  • Le Goff, M., Delbrut, A., Quinton, M., Pradelles, R., Bescher, M., Burel, A., et al. (2020). Protective action of Ostreococcus tauri and Phaeodactylum tricornutum extracts towards benzo[a]pyrene-induced cytotoxicity in endothelial cells. Marine Drugs, 18, 3.

    Google Scholar 

  • Lee, P. C., & Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechological production of carotenoids in microorganisms. Applied Microbiology and Biotechnology, 60, 1–11.

    Google Scholar 

  • Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynthesis Research, 106, 155–177.

    CAS  PubMed  Google Scholar 

  • Lemoine, Y., Rmiki, N.-E., Créach, A., Rachidi, J., & Schoefs, B. (2008). Cytoplasmic accumulation of astaxanthin by the green alga Haematococcus pluvialis (Flotow). In: B. Schoefs (Ed.), Plant Cell Compartiments. Kerala, India: Research Signpost.

    Google Scholar 

  • Leon, R., Couso, I., & Ez, E. (2007). Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 130, 143–152.

    CAS  PubMed  Google Scholar 

  • Levitan, O., Dinamarca, J., Hochman, G., & Falkowski, P. G. (2014). Diatoms: A fossil fuel of the future. Trends in Biotechnology, 32, 117–124.

    CAS  PubMed  Google Scholar 

  • Li, Z., Ma, X., Li, A., & Zhang, C. (2012a). A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Bioresource Technology, 117, 257–263.

    CAS  PubMed  Google Scholar 

  • Li, Z., Sun, M., Li, Q., Li, A., & Zhang, C. (2012b). Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their β-carotene productions in bubble column photobioreactor. Biotechnology Letters, 34, 2049–2053.

    CAS  PubMed  Google Scholar 

  • Li, J., Niu, X., Pei, G., Sui, X., Zhang, X., Chen, L., et al. (2015). Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii. Bioresource Technology, 191, 362–368.

    CAS  PubMed  Google Scholar 

  • Li, K., Cheng, J., Lu, H., Yang, W., Zhou, J., & Cen, K. (2017). Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2. Bioresource Technology, 233, 313–321.

    CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review in Plant Physiology and Plant Molecular Biology, 50, 47–65.

    CAS  Google Scholar 

  • Lichthenthaler, H. K. (1998). The plants’ 1-deoxy-D-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Lipid, 100, 128–138.

    Google Scholar 

  • Lin, J.-H., Lee, D.-J., & Chang, J.-S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.

    CAS  PubMed  Google Scholar 

  • Liu, J., Gerken, H., Huang, J., & Chen, F. (2013a). Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochemistry, 48, 788–795.

    CAS  Google Scholar 

  • Liu, Z., Liu, C., Hou, Y., Shulin, C., Xiao, D., Zhang, J., et al. (2013b). Isolation and characterization of a marine microalga for biofuel production with astaxanthin as a co-product. Energies, 6, 2759–2772.

    CAS  Google Scholar 

  • Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., & Chen, F. (2014). Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs, 12, 3487–3515.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J., Qiu, W., & Song, Y. (2016). Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Research, 18, 273–280.

    Google Scholar 

  • Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxidative Medicine and Cellular Longevity, 2017, art#2525967.

    Google Scholar 

  • Liu, Z., Hou, Y., He, C., Wang, X., Chen, S., Huang, Z., et al. (2020). Enhancement of linoleic acid content stimulates astaxanthin esterification in Coelastrum sp. Bioresource Technology, 300, 122649.

    CAS  PubMed  Google Scholar 

  • Lohr, M., & Wilhelm, C. (1999). Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proceedings of the National Academy of Sciences of the United States of America, 96, 8754–8789.

    Google Scholar 

  • Lohr, M., Im, C. S., & Grossman, A. R. (2005). Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiology, 138, 490–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of carotenoids. Trends in Biotechnology, 18, 160–167.

    CAS  PubMed  Google Scholar 

  • Lotan, T., & Hirschberg, J. (1995). Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Letters, 364, 125–128.

    CAS  PubMed  Google Scholar 

  • Makino, T., Harada, H., Ikenaga, H., Matsuda, S., Takaichi, S., Shindo, K., et al. (2008). Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli. Plant and Cell Physiology, 49, 1867–1878.

    CAS  PubMed  Google Scholar 

  • Marchand, J., Heydarizadeh, P., Schoefs, B., & Spetea, C. (2018). Ion and metabolite transport in the chloroplast of algae: Lessons from land plants. Cellular and Molecular Life Sciences, 75, 2153–2176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand, J., Heydarizadeh, P., Schoefs, B., & Spetea, C. 2020. Chloroplast ion and metabolite transport in algae. In: A. W. D. Larkum, A. Grossman, & J. Raven (Eds.), Photosynthesis in algae (2nd ed.). Springer, pp 107–139.

    Google Scholar 

  • Masmoudi, S., Nguyen-Deroche, N., Caruso, A., Ayadi, H., Morant-Manceau, A., Tremblin, G., et al. (2013). Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell—A review. Cryptogamie, Algologie, 34, 185–223.

    Google Scholar 

  • Massé, G., Belt, S. T., Rowland, S. J., & Rohmer, M. (2004). Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proceedings of the National Academy of Science of the United States of America, 101, 4413–4418.

    Google Scholar 

  • Maurey, K., Wolf, F. G., & Golbeck, J. H. (1986). 3-hydroxy-3-methylglutaryl coenzyme A reductse activity in Ochromonas malhamensis. Plant Physiology, 82, 523–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mc Gee, D., Archer, L., Paskuliakova, A., Mc Coy, G. R., Fleming, G. T. A., Gillespie, E., & Touzet, N. (2018). Rapid chemotaxonomic profiling for the identification of high-value carotenoids in microalgae. Journal of Applied Phycology, 30, 385–399.

    Google Scholar 

  • Mehariya, S., Iovine, A., Di Sanzo, G., Larocca, V., Martino, M., Leone, G. P., Casella, P. et al. (2019). Supercritical fluid extraction of lutein from Scenedesmus almeriensis. Molecules, 24, article#1324.

    Google Scholar 

  • Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A., & Stinco, C. M. (2015). A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 572, 188–200.

    PubMed  Google Scholar 

  • Mendes, R. L., Fernandes, H. L., Coelho, J., Reis, E. C., Cabral, J. M. S., Novais, J. M., et al. (1995). Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry, 53, 99–103.

    CAS  Google Scholar 

  • Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., et al. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology, 13, 2733–2750.

    CAS  PubMed  Google Scholar 

  • Minhas, A. K., Hodgson, P., Barrow, C. J., Sashidhar, B., & Adholeya, A. (2016). The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresource Technology, 211, 556–565.

    CAS  PubMed  Google Scholar 

  • Misawa, N., & Shimada, H. (1998). Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. Journal of Biotechnology, 59, 169–181.

    CAS  Google Scholar 

  • Miura, Y., Kondo, K., Saito, T., Shimada, H., Fraser, P. D., & Misawa, N. (1998). Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Applied and Environmental Microbiology, 64, 1226–1229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A., & Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in Aphids. Science, 328, 624–627.

    CAS  PubMed  Google Scholar 

  • Nahidian, B., Ghanati, F., Shahbazi, M., & Soltani, N. (2018). Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresource Technology, 255, 229–237.

    CAS  PubMed  Google Scholar 

  • Neumann, U., Derwenskus, F., Flister, V. F., Schmid-Staiger, U., Hirth, T., & Bischoff, S. C. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8.

    Google Scholar 

  • Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J.-F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17, 640.

    PubMed Central  Google Scholar 

  • Orosa, M., Torres, E., Fidalgo, P., & Abalde, J. (2000). Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology, 12, 553–556.

    CAS  Google Scholar 

  • Orosa, M., Franqueira, D., Cid, A., & Abalde, J. (2001). Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters, 23, 373–378.

    CAS  Google Scholar 

  • Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., et al. (2016). Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 15, 24–31.

    Google Scholar 

  • Palozza, P., & Krinsky, N. I. (1992). Antioxidant effects of carotenoids in vivo and in vitro: an overview. In: L. Packer (Ed.), Carotenoids. Part A: Chemistry, separation, quantification, and antioxidation. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press.

    Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., et al. (2015). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128.

    Google Scholar 

  • Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., et al. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46, 59–67.

    CAS  Google Scholar 

  • Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., et al. (2017). Fucoxanthin production by heterokont microalgae. Algal Research, 24, 387–393.

    Google Scholar 

  • Pirastru, L., Darwish, M., Chu, F. L., Perreault, F., Sirois, L., Sleno, L., et al. (2011). Carotenoid production and change of photosynthetic functions in Scenedesmus sp exposed to nitrogen limitation and acetate treatment. Journal of Applied Phycology, 24, 117–124.

    Google Scholar 

  • Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., García-Blairsy Reina, G. et al. (2012). Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Food Science and Technology, 46, 245–253.

    Google Scholar 

  • Pogorzelska, E., Godziszewska, J., Brodowska, M., & Wierzbicka, A. (2018). Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Science, 135, 54–61.

    CAS  PubMed  Google Scholar 

  • Postma, P. R., Pataro, G., Capitoli, M., Barbosa, M. J., Wijffels, R. H., Eppink, M. H., et al. (2016). Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresource Technology, 203, 80–88.

    CAS  PubMed  Google Scholar 

  • Ragni, M., & D’Alcala, M. R. (2007). Circadian variability in the photobiology of Phaeodactylum tricornutum: Pigment content. Journal of Plankton Research, 29, 141–156.

    CAS  Google Scholar 

  • Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74, 517–523.

    CAS  PubMed  Google Scholar 

  • Ranga Rao, A., Raghunath Reddy, R. L., Baskaran, V., Sarada, R., & Ravishankar, G. A. (2010). Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. Journal of Agricultural and Food Chemistry, 58, 8553–8559.

    Google Scholar 

  • Raposo, M., de Morais, A., & de Morais, R. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13, 5128–5155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recht, L., Zarka, A., & Boussiba, S. (2012). Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied Microbiology and Biotechnology, 94, 1495–1503.

    CAS  PubMed  Google Scholar 

  • Recht, L., Töpfer, N., Batushansky, A., Sikron, N., Gibon, Y., Fait, A., et al. (2014). Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. Journal of Biological Chemistry, 289, 30387–30403.

    CAS  PubMed  Google Scholar 

  • Rijstenbil, J. (2003). Effects of UVB radiation and salt stress on growth, pigments and antioxidative defence of the marine diatom Cylindrotheca closterium. Marine Ecology-Progress Series, 254, 37–48.

    CAS  Google Scholar 

  • Rodríguez-Sáiz, M., de la Fuente, J. L., & Barredo, J. L. (2010). Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Applied Microbiology and Biotechnology, 88, 645–658.

    PubMed  Google Scholar 

  • Sahin, S., Nasir, N., Erken, I., Cakmak, Z. E., & Cakmak, T. (2019). Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: Optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Materials Research Express, 6.

    Google Scholar 

  • Sajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). The carotenoid pigment zeaxanthin—A review. Comprehensive Reviews in Food Science and Food Safety, 7, 29–49.

    CAS  Google Scholar 

  • Salguero, A., de la Morena, B., Vigara, J., Vega, J. M., Vilchez, C., & León, R. (2003). Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering, 20, 249–253.

    CAS  PubMed  Google Scholar 

  • Sampathkumar, S. J., & Gothandam, K. M. (2019). Sodium bicarbonate augmentation enhances lutein biosynthesis in green microalgae Chlorella pyrenoidosa. Biocatalysis and Agricultural Biotechnology, 22, 101406.

    Google Scholar 

  • Sampathkumar, S. J., Srivastava, P., Ramachandran, S., Sivashanmugam, K., & Gothandam, K. M. (2019). Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microbial Pathogenesis, 135, 103658.

    CAS  PubMed  Google Scholar 

  • Sánchez, J. F., Fernández-Sevilla, J. M., Acién, F. G., Cerón, M. C., Pérez-Parra, J., & Molina-Grima, E. (2008). Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology, 79, 719–729.

    PubMed  Google Scholar 

  • Sathasivam, R., & Ki, J. S. (2018). A Review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16.

    Google Scholar 

  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26, 709–722.

    Google Scholar 

  • Sayanova, O., Mimouni, V., Ulmann, L., Morant-Manceau, A., Pasquet, V., Schoefs, B., et al. (2017). Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 1728.

    Google Scholar 

  • Schmidt, I., Schewe, H., Gassel, S., Jin, C., Buckingham, J., Hümbelin, M., et al. (2011). Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology, 89, 555–571.

    CAS  PubMed  Google Scholar 

  • Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science & Technology, 13, 361–371.

    CAS  Google Scholar 

  • Schoefs, B. (2005a). Plant pigments: Properties, analysis, degradation. Advances in Food and Nutrition Research, 49, 42–92.

    Google Scholar 

  • Schoefs, B. (2005b). Protochlorophyllide reduction—What is new in 2005? Photosynthetica, 43, 329–343.

    CAS  Google Scholar 

  • Schoefs, B., & Bertrand, M. (2000). The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process. FEBS Letters, 486, 243–246.

    CAS  PubMed  Google Scholar 

  • Schoefs, B., Rmiki, N., Rachadi, J., & Lemoine, Y. (2001). Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Letters, 500, 125–128.

    CAS  PubMed  Google Scholar 

  • Schoefs, B., Hu, H., & Kroth, P. G. (2017). The peculiar carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372.

    Google Scholar 

  • Schoefs, B., Van de Vijver, B., Wetzel, C., & Ector, L. (2020). From diatom species identification to ecological and biotechnological applications. Botany Letters.

    Google Scholar 

  • Schroeder, W. A., & Johnson, E. A. (1995). Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. Journal of Biological Chemistry, 270, 18374–18379.

    CAS  PubMed  Google Scholar 

  • Schubert, N., Garcia, M. E., & Pacheco, R. I. (2006). Carotenoid composition of marine red algae. Journal of Phycology, 42, 1208–1216.

    CAS  Google Scholar 

  • Schwender, J., Seemann, M., & Lichtenthaler, H. K. (1996). Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains or chlorophylls and pastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochemical Journal, 316, 73–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scibilia, L., Girolomoni, L., Berteotti, S., Alboresi, A., & Ballottari, M. (2015). Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Research-Biomass Biofuels and Bioproducts, 12, 170–181.

    Google Scholar 

  • Sellimi, S., Ksouda, G., Benslima, A., Nasri, R., Rinaudo, M., Nasri, M., et al. (2017). Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food and Chemical Toxicology, 107, 620–629.

    CAS  PubMed  Google Scholar 

  • Shahidi, F., & Brown, J. A. (1998). Carotenoid pigments in seafoods and aquaculture. Critical Reviews in Food Science and Nutrition, 38, 1–67.

    CAS  PubMed  Google Scholar 

  • Sharma, K. K., Ahmed, F., Schenk, P. M., & Li, Y. (2015). UV-C mediated rapid carotenoid induction and settling performance of Dunaliella salina and Haematococcus pluvialis. Biotechnology and Bioengineering, 112, 2106–2114.

    CAS  PubMed  Google Scholar 

  • Shi, X. M., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–727.

    CAS  PubMed  Google Scholar 

  • Shimazu, Y., Kobayashi, A., Endo, S., Takemura, J., & Takeda, M. (2019). Effect of lutein on the acute inflammation-induced c-Fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons. European Journal of Oral Sciences, 127, 379–385.

    CAS  PubMed  Google Scholar 

  • Solovchenko, A. E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. N. (2008). Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russian Journal of Plant Physiology, 55, 455–462.

    CAS  Google Scholar 

  • Solymosi, K. (2012). Plastid structure, diversification and interconversions. I. Algae. Current Chemical Biology, 6, 167–186.

    Google Scholar 

  • Solymosi, K., Latruffe, N., Morant-Manceau, A., & Schoefs, B. (2015). Food colour additives of natural origin. In: M. Scotter (Ed.), Colour additives for foods and beverages: Development, safety and applications. Woodhead Publishing.

    Google Scholar 

  • Soudant, E., Bezalel, L., Schickler, H., Paltiel, J., Ben-Amotz, A., Shaish, A., & Perry, I. (2002). Carotenoid preparation. US patent: US6383474B1 IBR Israeli Biotechnology Research Ltd

    Google Scholar 

  • Srinivasan, R., Kumar, V. A., Kumar, D., Ramesh, N., Babu, S., & Gothandam, K. M. (2015). Effect of dissolved inorganic carbon on β-carotene and fatty acid production in Dunaliella sp. Applied Biochemistry and Biotechnology, 175, 2895–2906.

    CAS  PubMed  Google Scholar 

  • Srinivasan, R., Mageswari, A., Subramanian, P., Suganthi, C., Chaitanyakumar, A., Aswini, V., & Gothandam, K. M. (2018). Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports, 8.

    Google Scholar 

  • Steinbrenner, J., & Sandmann, G. (2006). Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology, 72, 7477–7484.

    Google Scholar 

  • Su, Y., Wang, J., Shi, M., Niu, X., Yu, X., Gao, L., et al. (2014). Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresource Technology, 170, 522–529.

    CAS  PubMed  Google Scholar 

  • Sujak, A. (2009). Interactions between canthaxanthin and lipid membranes—Possible mechanisms of canthaxanthin toxicity. Cellular & Molecular Biology Letters, 14, 395–410.

    CAS  Google Scholar 

  • Sun, Z., Gantt, E., & Cunningham, F. X. (1996). Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. Journal of Biological Chemistry, 271, 24349–24352.

    CAS  PubMed  Google Scholar 

  • Sun, N., Wang, Y., Li, Y., Huang, J., & Chen, F. (2008). Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43, 1288–1292.

    CAS  Google Scholar 

  • Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs, 9, 1101–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura, M., Kubo, A., Higuchi, Y., Maoka, T., Sahara, T., Yaoi, K., et al. (2019). Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Applied Microbiology and Biotechnology, 103, 9393–9399.

    CAS  PubMed  Google Scholar 

  • Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2018). Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. Journal of the Science of Food and Agriculture, 98, 511–518.

    CAS  PubMed  Google Scholar 

  • Tan, B. L., & Norhaizan, M. E. (2019). Carotenoids: How effective are they to prevent age-related diseases? Molecules, 24, 1801.

    CAS  PubMed Central  Google Scholar 

  • Tan, S., Cunningham, F. X., Youmans, M., Grabowski, B., Sun, Z., & Gantt, E. (1995). Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): Comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. Journal of Phycology, 31, 897–905.

    CAS  Google Scholar 

  • Tjahjono, A. E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N., & Nagai, S. (1994). Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnology-Letters, 16, 133–138.

    CAS  Google Scholar 

  • Tonegawa, I., Okada, S., Murakami, M., & Yamaguchi, K. (1998). Pigment composition of the green microalga Boryococcus braunii Kawaguchi-1. Fisheries Science, 64, 305–308.

    CAS  Google Scholar 

  • Turujman, S. A., Wamer, W. G., Wei, R. R., & Albert, R. H. (1997). Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. Journal of the American Oil AC International, 80, 622–632.

    CAS  Google Scholar 

  • Vaquero, I., Vázquez, M., Ruiz-Domínguez, M. C., & Vílchez, C. (2014). Enhanced production of a lutein-rich acidic environment microalga. Journal of Applied Microbiology, 116, 839–850.

    CAS  PubMed  Google Scholar 

  • Varela, J. C., Pereira, H., Vila, M., & Leon, R. (2015). Production of carotenoids by microalgae: achievements and challenges. Photosynthesis Research, 125, 423–436.

    CAS  PubMed  Google Scholar 

  • Veiga-Crespo, P., Blasco, L., Rosa-Dos-santos, F., Poza, M., & Villa, T. (2005). Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. International Microbiology, 8, 55–58.

    CAS  PubMed  Google Scholar 

  • Vinayak, V., Manoylov, K. M., Gateau, H., Blanckaert, V., Herault, J., Pencreac’h, G., et al. (2015). Diatom milking: A review and new approaches. Marine Drugs, 13, 2629–2665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent, U., Serano, F., & von Holst, C. (2017). Development and validation of a multi-analyte method for the regulatory control of carotenoids used as feed additives in fish and poultry feed. Food Additives & Contaminants: Part A, 34, 1285–1297.

    CAS  Google Scholar 

  • Visioli, F., & Artaria, C. (2017). Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food & Function, 8, 39–63.

    CAS  Google Scholar 

  • Von Oppen-Bezalel, L., Fishbein, D., Havas, F., Ben-Chitrit, O., & Khaiat, A. (2015). The photoprotective effects of a food supplement tomato powder rich in phytoene and phytofluene, the colorless carotenoids, a preliminary study. Global Dermatology, 2, 178–182.

    Google Scholar 

  • Wagner, I., Steinweg, C., & Posten, C. (2016). Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnology Journal, 11, 1060–1071.

    CAS  PubMed  Google Scholar 

  • Wang, Y., & Chen, T. (2008). The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World Journal of Microbiology & Biotechnology, 24, 2927–2932.

    CAS  Google Scholar 

  • Wang, B. B., Zhang, Z., Hu, Q., Sommerfeld, M., Lu, Y. H., & Han, D. X. (2014). Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. Plos One, 9, 10.

    Google Scholar 

  • Wu, Z., Wu, S., & Shi, X. (2007). Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. Journal of Food Process Engineering, 30, 174–185.

    Google Scholar 

  • Wu, Y.-H., Yang, J., Hu, H.-Y., & Yu, Y. (2013). Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecological Engineering, 60, 155–159.

    Google Scholar 

  • Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., & Zhang, C. (2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11, 2667–2681.

    PubMed  PubMed Central  Google Scholar 

  • Xu, Y. N., & Harvey, P. J. (2019). Carotenoid production by Dunaliella salina under red light. Antioxidants, 8.

    Google Scholar 

  • Ye, Y., & Huang, J.-C. (2019). Defining the biosynthesis of ketocarotenoids in Chromochloris zofingiensis. Plant Diversity.

    Google Scholar 

  • Yokthongwattana, K., Jin, E., & Melis, A. (2019). Chloroplast acclimation, photodamage and repair reactions of photosystem-II in the model green alga Dunaliella salina. In: A. Ben-Amotz, E. W. Polle, & D. V. Subba Rao, (Eds.), The alga Dunaliella biodiversity, physiology, genomics and biotechnology (1st ed.). Enfield: CRC Press.

    Google Scholar 

  • Yoshii, Y., Takaichi, S., Maoka, T., Suda, S., Sekiguchi, H., Nakayama, T., et al. (2005). Variation of siphonaxanthin series among the genus Nephroselmis (Prasinophyceae, Chlorophyta), including a novel primary methoxy carotenoid. Journal of Phycology, 41, 827–834.

    CAS  Google Scholar 

  • Yu, X., Cui, H., Cui, Y., Wang, Y., Li, X., Liu, Z., et al. (2014). Gene cloning, sequence analysis, and expression profiles of a novel β-ring carotenoid hydroxylase gene from the photoheterotrophic green alga Chlorella kessleri. Molecular Biology Reports, 41, 7103–7113.

    CAS  PubMed  Google Scholar 

  • Zarandi-Miandoab, L., Hejazi, M. A., Bagherieh-Najjar, M. B., & Chaparzadeh, N. (2019). Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Research, 18, 1566–1579.

    PubMed  Google Scholar 

  • Zhang, D. H., & Lee, Y. K. (1997). Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology, 9, 459–463.

    CAS  Google Scholar 

  • Zhang, Z., Sun, D., Mao, X., Liu, J., & Chen, F. (2016). The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic Chlorella zofingiensis. Algal Research, 19, 178–183.

    Google Scholar 

  • Zhang, L., Zhang, C., Liu, J., & Yang, N. (2020). A strategy for stimulating astaxanthin and lipid production in Haematococcus pluvialis by exogenous glycerol application under low light. Algal Research, 46, 101779.

    Google Scholar 

  • Zhao, Y., Hou, Y., Chai, W., Liu, Z., Wang, X., He, C., Hu, Z., et al. (2019). Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enzyme and Microbial Technology, 109487.

    Google Scholar 

  • Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., & Cohen, Z. (2002). Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. Journal of Phycology, 38, 325–331.

    CAS  Google Scholar 

  • Zhekisheva, M., Zarka, A., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2005). Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation of the green alga Haematococcus pluvialis (Chlorophyceae). Journal of Phycology, 41, 819–826.

    CAS  Google Scholar 

  • Zhong, Y.-J., Huang, J.-C., Liu, J., Li, Y., Jiang, Y., Xu, Z.-F., et al. (2011). Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. Journal of Experimental Botany, 62, 3659–3669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuluaga Tamayo, M., Choudat, L., Aid-Launais, R., Thibaudeau, O., Louedec, L., Letourneur, D., Gueguen, V., et al. (2019). Astaxanthin complexes to attenuate muscle damage after in vivo femoral ischemia-reperfusion. Marine Drugs, 17, 354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Schoefs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scarsini, M., Marchand, J., Schoefs, B. (2020). Carotenoid Overproduction in Microalgae: Biochemical and Genetic Engineering. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_5

Download citation

Publish with us

Policies and ethics