Skip to main content

Analytical Protocols in the Measurement of Pigments’ Bioavailability

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Microalgae have been recognized as the foundation of the food chain in aquatic ecosystems and one of the most prominent characteristics of algae is their color, which is determined by their pigments, hence, microalgal biomass is attracting worldwide attention. These pigments are colorful chemical substances that are part of the photosynthetic system of microalgae and are distinguished into three classes: carotenoids, chlorophylls, and phycobiliproteins. Besides the color, pigments have health-promoting properties and a broad range of potential industrial applications. Consumers are becoming increasingly aware of the correlation between diet, health, and disease prevention. Despite the beneficial properties of pigments provided by microalgae, their effectiveness at preventing a range of diseases depends on their bioaccessibility and bioavailability. The digestion process comprises several steps, which promotes an intense variation of the conditions that the pigments are exposed, and therefore, could in several ways compromises the health benefits caused by microalgae pigment consumption. Therefore, the present chapter aims to present the main methods used to assess the bioaccessibility and bioavailability of pigments from microalgae to better understand the processes involved. Consequently, providing information about the most accepted analytical protocols in measurement of bioavailability of pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asai, A., Yonekura, L., & Nagao, A. (2008). Low bioavailability of dietary epoxyxanthophylls in humans. British Journal of Nutrition, 100, 273–277.

    Article  CAS  Google Scholar 

  • Begum, H., Yusoff, F. M. D., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56, 2209–2222.

    Article  CAS  Google Scholar 

  • Brown, E. M., Nitecki, S., Pereira-Caro, G., McDougall, G. J., Stewart, D., Rowland, I., et al. (2014). Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: Potential impact on colonic health. BioFactors, 406, 611–623.

    Article  Google Scholar 

  • Cha, K. H., Koo, S. Y., Song, D. G., & Pan, C. H. (2012). Effect of microfluidization on bioaccessibility of carotenoids from Chlorella ellipsoidea during simulated digestion. Journal of Agricultural and Food Chemistry, 60, 9437–9442.

    Article  CAS  Google Scholar 

  • Chernomorsky, S., Segelman, A., & Poretz, R. D. (1999). Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratogenesis, Carcinogenesis, and Mutagenesis, 19, 313–322.

    Article  CAS  Google Scholar 

  • Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.

    Article  CAS  Google Scholar 

  • Ferruzzi, M. G., Failla, M. L., & Schwartz, S. J. (2001). Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and caco-2 human cell model. Journal of Agricultural and Food Chemistry, 49, 2082–2089.

    Article  CAS  Google Scholar 

  • Ferruzzi, M. G., Failla, M. L., & Schwartz, S. J. (2002). Sodium copper chlorophyllin: In vitro digestive stability and accumulation by caco-2 human intestinal cells. Journal of Agricultural and Food Chemistry, 50, 2173–2179.

    Article  CAS  Google Scholar 

  • Gille, A., Hollenbach, R., Trautmann, A., Posten, C., & Briviba, K. (2019). Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum. Food Research International, 118, 40–48.

    Article  CAS  Google Scholar 

  • Gille, A., Neumann, U., Louis, S., Bischoff, S. C., & Briviba, K. (2018). Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. Journal of Functional Foods, 49, 285–294.

    Article  CAS  Google Scholar 

  • Gille, A., Trautmann, A., Posten, C., & Briviba, K. (2016). Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. International Journal of Food Sciences and Nutrition, 67, 507–513.

    Article  CAS  Google Scholar 

  • Granado-Lorencio, F., Herrero-Barbudo, C., Acién-Fernández, G., Molina-Grima, E., Fernández-Sevilla, J., Pérez-Sacristán, B., & Blanco-Navarro, I. (2009). In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chemistry, 114, 747–752.

    Article  CAS  Google Scholar 

  • Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9, 625–644.

    Article  CAS  Google Scholar 

  • Hartmann, D., Thürmann, P. A., Spitzer, V., Schalch, W., Manner, B., & Cohn, W. (2004). Plasma kinetics of zeaxanthin and 3′-dehydro-lutein after multiple oral doses of synthetic zeaxanthin. American Journal of Clinical Nutrition, 79, 410–417.

    Article  CAS  Google Scholar 

  • Mackie, A., & Rigby, N. (2015). InfoGest consensus method. In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, et al. (Eds.), The impact of food bioactives on health: In vitro and ex vivo models (pp. 13–22). New York: Springer.

    Google Scholar 

  • Minic, S. L., Stanic-Vucinic, D., Mihailovic, J., Krstic, M., Nikolic, M. R., & Cirkovic Velickovic, T. (2016). Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina. Journal of Proteomics, 147, 132–139.

    Article  CAS  Google Scholar 

  • Ranga Rao, A., Baskaran, V., Sarada, R., & Ravishankar, G. A. (2013). In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass—A repeated dose study. Food Research International, 54, 711–717.

    Article  CAS  Google Scholar 

  • Ranga Rao, A., Raghunath Reddy, R. L., Baskaran, V., Sarada, R., & Ravishankar, G. A. (2010). Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. Journal of Agricultural and Food Chemistry, 58, 8553–8559.

    Article  CAS  Google Scholar 

  • Rao, V. G., Banerjee, C., Ghosh, S., Mandal, S., Kuchlyan, J., & Sarkar, N. (2013). A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid. The Journal of Physical Chemistry B, 117, 7472–7480.

    Article  CAS  Google Scholar 

  • Sangeetha, R. K., Bhaskar, N., Divakar, S., & Baskaran, V. (2009). Bioavailability and metabolism of fucoxanthin in rats: Structural characterization of metabolites by LC-MS (APCI). Molecular and Cellular Biochemistry, 333, 299.

    Article  Google Scholar 

  • Shibata, S., & Hayakawa, K. (2009). Bioavailability of lutein in Chlorella powder: A single ingestion of Chlorella powder raises serum lutein concentrations in healthy human volunteers. Food Science and Technology Research, 15, 449–452.

    Article  CAS  Google Scholar 

  • Sugawara, T., Baskaran, V., Tsuzuki, W., & Nagao, A. (2002). Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by caco-2 human intestinal cells and mice. Journal of Nutrition, 132, 946–951.

    Article  CAS  Google Scholar 

  • Wu, Q., Fu, X. P., Zhang, Q., Liu, G. M., Cao, M. J., & Cai, Q. F. (2015). Effects of physicochemical factors and in vitro gastrointestinal digestion on antioxidant activity of R-phycoerythrin from red algae Bangia fusco-purpurea. International Journal of Food Sciences and Technology, 50, 1445–1451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veridiana Vera de Rosso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braga, A.R.C., de Rosso, V.V. (2020). Analytical Protocols in the Measurement of Pigments’ Bioavailability. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_10

Download citation

Publish with us

Policies and ethics