Skip to main content

Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Chlorophylls (Chl) are the most abundant natural pigment supporting oxygenic photosynthesis in microalgae and Cyanobacteria, whereby they derive energy for metabolism and reproduction. In microalgae (eukaryotes) Chls are located in the chloroplast, but in Cyanobacteria (prokaryotes) in the photosynthetic lamellae. Chlorophylls are constituted by a large aromatic tetrapyrrole macrocycle (light absorption and redox chemistry), a central Mg ion (maximizes excited state lifetime), and a hydrocarbon tail (anchoring in thylakoids). Endosymbiosis Theory explains the photosynthetic eukaryotes plastids origin, postulating that Cyanobacteria ancestral was engulfed by eukaryotic host cell and gradually transformed into organelles that were further spread to other eukaryotes by additional rounds of endosymbiosis. Evolution distributed the Chls a, b, c, d, and f among microalgae and Cyanobacteria, with Chl a universally distributed; Chl b in Euglenophyta, Chlorophyta, and Charophyta; Chl c in Bacillariophyceae, Chrysophyceae, Xanthophyceae, Raphidophyceae, Phaeophyceae, Haptophyta, Cryptophyta, Dinophyta; Chl d in Rhodophyta; Chl f in Cyanobacteria. The pathways of Chl a biosynthesis were based in experiments with leaves and Chlorella vulgaris, dating back to the forties. Latter, it was documented the two genetically and biochemically different strategies for chlorophyll a biosynthesis, one being light dependent and one light independent co-exist. Chl f is the most recently discovered Chl, helping Cyanobacteria thrive in environments dominated by far-red light; far-red light photoacclimation, whereby 8% Chl a is replaced by Chl f, permits cyanobacteria expand light absorption range for oxygenic photosynthesis up to 800 nm allowing them to access 33% more photons than organisms that do not have Chl f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allakhverdiev, S. I., Kreslavski, V. D., Zharmukhamedov, S. K., Voloshin, R. A., Korol’kova, D. V., Tomo, T., & Shen, J. R. (2016). Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 81(3), 201–212.

    Article  CAS  Google Scholar 

  • Angerhofer, A., Bornhäuser, F., Aust, V., Hartwich, G., & Scheer, H. (1998). Triplet energy transfer in bacterial photosynthetic reaction centres. BBA-Bioenergetics, 1365(3), 404–420.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, G. A. (1998). Greening in the dark:light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. Journal of Photochemistry and Photobiology B: Biology, 43, 87–100.

    Article  CAS  Google Scholar 

  • Aronoff, S. (1966). The chlorophylls—An introductory survey. In L. P. Vernon & G. R. Seely (Eds.), The chlorophylls (pp. 3–20). New York: Academic Press.

    Chapter  Google Scholar 

  • Beale, S. I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Research, 60, 43–73.

    Article  CAS  Google Scholar 

  • Behrendt, L., Brejnrod, A., Schlief, M., Sorensen, S. J., Larkum, A. W., & Kuhl, M. (2015). Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME Journal, 9(9), 2108–2111.

    Article  CAS  Google Scholar 

  • Blass, U., Anderson, J. M., & Calvin, M. (1959). Biosynthesis and possible functional relationships among the carotenoids; and between chlorophyll a and chlorophyll b. Plant Physiology, 34(3), 329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogorad, L. (1976). Chlorophyll biosynthesis. In T. W. Goodwin (Ed.), Chemistry and biochemistry of plant pigments (2nd ed., pp. 64–148). New York: Academic Press.

    Google Scholar 

  • Bogorad, L. (1967). Chlorophylls. In: R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 385–408) New York: Academic Press.

    Google Scholar 

  • Borodin, I. P. (1882). Über chlorophyllkristalle. Bot Z, 40(36), 608–610.

    Google Scholar 

  • Cahoon, A. B., & Timko, M. P. (2003). Biochemistry and regulation of chlorophyll biosynthesis. In: A. W. D. Larkum, S. E. Douglas, & Raven, J. A. (Eds.), Photosynthesis in algae (pp. 96–131). Springer, Dordrecht.

    Google Scholar 

  • Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318–1319.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16, 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Li, Y., Birch, D., & Willows, R. D. (2012). A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment. FEBS Letters, 586(19), 3249–3254.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83, 26.1–26.24.

    Google Scholar 

  • De Duve, C. (2007). The origin of eukaryotes: a reappraisal. Nature Reviews Genetics, 8(5), 395.

    Article  PubMed  CAS  Google Scholar 

  • Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. The American Naturalist, 154, 164–177.

    Article  Google Scholar 

  • Douglas, S. E., Raven, J. A., & Larkum, A. W. D. (2003). The algae and their general characteristics. In: A. W. Larkum, S. E. Douglas, & Raven. J. A. (Eds.), Photosynthesis in algae (pp. 1–10). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Dujardin, E., Laszlo, P., & Sacks, D. (1975). The chlorophylls. An experiment in bio-inorganic chemistry. Journal of Chemical Education 52(11), 742.

    Google Scholar 

  • Eggink, L. L., LoBrutto, R., Brune, D. C., Brusslan, J., Yamasato, A., Tanaka, A., & Hoober, J. K. (2004). Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biology, 4(1), 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkowski, P. G., & Owens, T. G. (1980). Light–shade adaptation: two strategies in marine phytoplankton. Plant Physiology, 66, 592–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawley, M. W. (1989). Detection of chlorophylls c1, c2 and c3 in pigment extracts of Prymnesium parvum (PRMNESIOPHYCEAE). Journal of Phycology, 25(3), 601–604.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The Evolution of Modern Eukaryotic Phytoplakton. Science, 305, 354–360.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, V. S., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 2017(33), 19–27.

    Google Scholar 

  • Fisher, H., & Orth, H. (1937). Die Chemie des pyrrols. Leipzig, Germany: Acad. Verlag.

    Google Scholar 

  • Fischer, H., & Orth, H. (1940). In Die Chemie der Pyrrols (pp. 153–154). Leipzig: Akad. Verlag.

    Google Scholar 

  • Fischer, H., & Orth, H. (1943). Die Chemie des Pyrrols. Edwards, Ann Arbor, Michigan, USA: II. Pyrrol-farbstoffe. Part I.

    Google Scholar 

  • Fischer, H., & Strell, M. (1947). Naturfarbstoffe IV Chlorophyll. Fiat Review of German Science, 39, 141.

    Google Scholar 

  • Fookes, C. J., & Jeffrey, S. W. (1989). The structure of chlorophyll c 3, a novel marine photosynthetic pigment. Journal of the Chemical Society, Chemical Communications, 23, 1827–1828.

    Article  Google Scholar 

  • Galova, E., Salgovicova, I., Demko, V., Mikulova, K., Sevcovicova, A., Slovakia, L., et al. (2008). A short overview of chlorophyll biosynthesis in algae. Biology, 63(6), 947–951.

    CAS  Google Scholar 

  • Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345, 1312–1317.

    Article  CAS  PubMed  Google Scholar 

  • Granick, S. (1948a). Magnesium protoporphyrin-9 as precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 172, 717–727.

    Article  CAS  Google Scholar 

  • Granick, S. (1948b). Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 175, 333–342.

    Article  CAS  Google Scholar 

  • Granick, S. (1954). Biosynthesis and function of heme and chlorophyll. Record Chemistry Progress, 15, 27–35.

    CAS  Google Scholar 

  • Green, B. R., & Durnford, D. G. (1996). The Chlorophyll–carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 685–714.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, G. A. F., & Jones, O. T. G. (1980). Haems and chlorophylls: comparison of function and formation. Journal of Medical Genetics, 17, 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Salgado, P., Leyva-Castillo, L. E., Rios-Castro, E., & Gomez-Lojero, C. (2018). Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: the phycobili- somes, a proteomic approach. Photosynthesis Research, 138, 39–56.

    Article  CAS  PubMed  Google Scholar 

  • Ho, M. Y., Shen, G., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light- dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353, 213–227.

    Article  CAS  Google Scholar 

  • Ho, M. Y., Soulier, N. T., Canniffe, D. P., Shen, G., & Bryant, D. A. (2017). Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology, 37, 24–33.

    Article  CAS  PubMed  Google Scholar 

  • Ho, M. Y. (2018). Characterization of far-red light photoacclimation in cyanobacteria. Biochemistry and Molecular Biology, 131, 173–186.

    Google Scholar 

  • Hoppe-Seyler, F. (1879). Zeitschrift fur Physiologische Chemie, 3, 339.

    Google Scholar 

  • Hoppe-Seyler, F. (1880). Zeitschrift fur Physiologische Chemie, 4, 193.

    Google Scholar 

  • Hoppe-Seyler, F. (1881). Zeitschrift fur Physiologische Chemie, 5, 75.

    Google Scholar 

  • Hunsperger, H. M., Randhawa, T., & Cattolico, R. A. (2015). Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evolutionary Biology, 15, 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffrey, S. W. (1989). Chlorophyll c pigments and their distribution in chromophytic algae. In J. C. Green, B. S. C. Leadbetter, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives (pp. 13–36). Oxford: Clarendon Press.

    Google Scholar 

  • Jeffrey, S. W. (2013). Cronulla NSW, Australia. Primary Productivity in the Sea, 19, 33.

    Google Scholar 

  • Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91(10), 1481–1493.

    Article  PubMed  Google Scholar 

  • Kirk, J. T. O., & Tilney-Bassett, R. A. E. (1978). The plastids: Their chemistry. Structure, Growth and Inheritance: Elsevier, Amsterdam.

    Google Scholar 

  • Kurashov, V., Ho, M. Y., Shen, G., Piedl, K., Laremore, T. N., Bryant, D. A., & Golbeck, J. H. (2019). Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 141, 151–163.

    Article  CAS  PubMed  Google Scholar 

  • La Roche, J., van der Staay, G. W. M., Partensky, F., Ducret, A., Aebersold, R., Li, R., & Green, B. R. (1996). Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proceedings of the National academy of Sciences of the United States of America, 93, 15244–15248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkum, A. W. (2016). Photosynthesis and Light Harvesting in Algae. In M. A. Borowitzka, J. Beardal, & J. A. Raven (Eds.), The Physiology of Microalgae (pp. 67–87). Switzerland: Springer International Publishing A G.

    Chapter  Google Scholar 

  • Larkum, A. W., & Kühl, M. (2005). Chlorophyll d: the puzzle resolved. Trends in Plant Science, 10(8), 355–357.

    Article  CAS  PubMed  Google Scholar 

  • Larkum, A. W. D. , Scaramuzzi, C. , Cox, G. C. , Hiller, R. G. , & Turner, A. G. (1994). Light harvesting chlorophyll c-like pigment in Prochloron. Proceedings of the National Academy of Sciences USA, 91, 679–683.

    Google Scholar 

  • Lehninger, A. L. (1987). Principles of biochemistry. New York—USA: Worth Publishers, Inc..

    Google Scholar 

  • Li, J., Goldschmidt-Clermont, M., & Timko, M. P. (1993). Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. The Plant Cell, 5, 1817–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., & Chen, M. (2015). Novel chlorophylls and new directions in photosynthesis research. Functional Plant Biology, 42, 493–501.

    Article  PubMed  Google Scholar 

  • Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., & Chen, M. (2012). Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. BBA-Bioenergetics, 1817(8), 1292–1298.

    Article  CAS  PubMed  Google Scholar 

  • Loeffler, J. E. (1955). Precursors of protochlorophyll in etiolated barley seedlings. Carnegie Institution of Washington Year Book, 54, 159–160.

    Google Scholar 

  • Manning, W. M., & Strain, H. H. (1943). Chlorophyll d, a green pigment in red algae. Journal of Biological Chemistry, 151, 1–19.

    Article  CAS  Google Scholar 

  • Marks, G. S. (1966). The biosynthesis of heme and chlorophyll. Botanical Review, 32, 56–94.

    Article  Google Scholar 

  • Markwell, J. P., Thornber, J. P., & Boggs, R. T. (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll—protein complexes. Proceedings of the National Academy of Sciences USA., 76(3), 1233–1235.

    Article  CAS  Google Scholar 

  • Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1996). Chlorophyll d as a major pigment. Nature, 383, 402.

    Article  CAS  Google Scholar 

  • Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1997). Pigment composition of a novel oxygenic photosynthetic procaryote containing chlorophyll d as the major chlorophyll. Plant and Cell Physiology, 38, 274–281.

    Article  CAS  Google Scholar 

  • Monteverde, ΝΑ. (1893). Acta Horti Petropolitani, 13, 148.

    Google Scholar 

  • Nakagawara, E., Sakuraba, Y., Yamasato, A., Tanaka, R., & Tanaka, A. (2007). Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. The Plant Journal, 49(5), 800–809.

    Article  CAS  PubMed  Google Scholar 

  • Nencki, Μ, & Marchlewski, L. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 1687.

    Article  CAS  Google Scholar 

  • Nencki, M. (1896). Berichte der deutschen chemischen Gesellschaft, 29, 2877.

    Article  Google Scholar 

  • Nencki, M., & Zaleski, J. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 997.

    Article  CAS  Google Scholar 

  • Nieuwenburg, P., Clarke, R. J., Cai, Z.-L., Chen, M., Larkum, A. W. D., Cabra, I. N. M., et al. (2003). Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochemistry and Photobiology, 77, 637–638.

    Article  Google Scholar 

  • Nurnberg, D. J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L. A., et al. (2018). Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science, 360, 1210–1213.

    Article  PubMed  CAS  Google Scholar 

  • Partensky, F., & Garczarek, L. (2003). The photosynthetic apparatus of chlorophyll b and d containing Oxyphotobacteria. In: A. W. D. Larkum, S. E. Douglas, & J. A. Raven (Eds.) Photosynthesis in Algae (pp. 29–62). Springer, Dordrecht.

    Google Scholar 

  • Pelletier, P. J., & Caventou, J. B. (1818). Note sur un nouvel Alcali. Annales de chimie et de physique, 8, 323–324.

    Google Scholar 

  • Pocock, T. H., Koziak, A., Rosso, D., Falk, S., & Huner, N. P. A. (2007). Chlamydomonas raudensis (UWO 241), Chlorophyceae, exhibits the capacityfor rapid D1 repair in response to chronic photoinhibition at low temperature. Journal of Phycology, 43, 924–936.

    Article  CAS  Google Scholar 

  • Porra, R. J. (1997). Recent progress in porphyrin and chlorophyll biosynthesis. Photochemistry and Photobiology, 65(3), 492–516.

    Article  CAS  Google Scholar 

  • Reinbothe, C., El Bakkouri, M., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., et al. (2010). Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends in Plant Science, 15, 614–624.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27–41.

    Article  CAS  PubMed  Google Scholar 

  • Rüdiger, W. (2002). Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research, 74(2), 187–193.

    Article  PubMed  Google Scholar 

  • Scheer, H. (1991). Structure and occurence of chlorophylls. In: Scheer, H. (Ed.). Chlorophylls (pp. 3–30). CRC Press

    Google Scholar 

  • Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications (pp. 1–26). Printed in The Netherlands: Springer.

    Google Scholar 

  • Schliep, M., Cavigliasso, G., Quinnell, R. G., Stranger, R., & Larkum, A. W. D. (2013). Formyl group modification of chlorophyll a: A major evolutionary mechanism in oxygenic photosynthesis. Plant, Cell and Environment, 36, 521–527.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, R., & Senger, H. (1993). Protochlorophyllide reductase: A key enzyme in the greening process. Pigment-Protein Complexes in Plastids: Synthesis and Assembly, 179–218.

    Google Scholar 

  • Shemin, D., & Wittenberg, J. (1951). The mechanism of porphyrin formation. The role of the tricarboxilic acid cycle. Journal of Biological Chemistry, 192, 315–334.

    Article  CAS  Google Scholar 

  • Shen, G., Canniffe, D. P., Ho, M. Y., Kurashov, V., van der Est, A., Golbeck, J. H., & Bryant, D. A. (2019). Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthnesis Research, 140(1), 77–92.

    Google Scholar 

  • Shui, J., Saunders, E., Needleman, R., Nappi, M., Cooper, J., Hall, L., et al. (2009). Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant and Cell Physiology, 50, 1507–1521.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. H. C. (1948). Protochlorophyll, precursor of chlorophyll. Archives of Biochemistry and Biophysics, 19, 449–454.

    CAS  Google Scholar 

  • Smith, J. H. C. (1960). Prootochlorophyll transformations. In M. B. Allen (Ed.), Comparative Biochemistry of Photoreactive Systems (pp. 257–277). New York: Academic Press Inc.

    Google Scholar 

  • South, G. R., & Whittick, A. (1987). An introduction to phycology. Blackwell Science Ltd.

    Google Scholar 

  • Stauber, J. L., & Jeffrey, S. W. (1988). Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology, 24, 158–172.

    Article  CAS  Google Scholar 

  • Stokes, G. G. (1854). Annals Physik, 2(4), 220.

    Google Scholar 

  • Stokes, G. G. (1864a). On the supposed identity of biliverdin with chlorophyll, with remarks on the constitution of chlorophyll. Proceedings of the Royal Society, 13, 144–145.

    Google Scholar 

  • Stokes, G. G. (1864b). XXXIV.— On the application of the optical properties of bodies to the detection and discrimination of organic substances. Journal of the Chemical Society, 17, 304–318.

    Article  Google Scholar 

  • Strain, H. H., Cope, B. T., Jr., McDonald, G. N., Svec, W. A., & Katz, J. J. (1971). Chlorophylls c1 and c2. Phytochemistry, 10(5), 1109–1114.

    Article  CAS  Google Scholar 

  • Suzuki, J. Y., & Bauer, C. E. (1992). Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). The Plant Cell, 4, 929–940.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szyszka, B., Ivanov, A. G., & Huner, N. P. A. (2007). Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. BBA-Bioenergetics, 1767, 789–800.

    Article  CAS  PubMed  Google Scholar 

  • Tswett, M. (1906). Ber. deut. botan. Ges, 24, 316–384.

    CAS  Google Scholar 

  • Tswett, M. (1907). Ber. Deut. Botan. Ges., 25, 140.

    Google Scholar 

  • Tsweet, M. (1908). Biochemical Zoology, 10, 414.

    Google Scholar 

  • van den Hoek, C., van den Hoeck, H., Mann, D., & Jahns, H. M. (1995). Algae: An introduction to phycology. Cambridge University Press.

    Google Scholar 

  • von Wettstein, D., Gough, S., & Kannangara, C. G. (1995). Chlorophyll biosynthesis. The Plant Cell, 7, 1039–1057.

    Article  Google Scholar 

  • Willstätter, R., & Stoll, A. (1913). Untersuchungen über chlorophyll. Journal of Springer.

    Google Scholar 

  • Wolff, J. B., & Price, L. (1957). Terminal steps of chlorophyll a biosynthesis in higher plants. Archives of Biochemistry and Biophysics, 72, 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnet, R., Buchschacher, P., et al. (1960). The total synthesis of chlorophyll. Journal of the American Chemical Society, 82, 3800–3801.

    Article  CAS  Google Scholar 

  • Wright, S. W., & Jeffrey, S. W. (2006). Pigment markers for phytoplankton production. In: Marine organic matter: biomarkers, isotopes and DNA Springer (pp. 71–104), Berlin, Heidelberg.

    Google Scholar 

  • Zapata, M., Garrido, J. L., & Jeffrey, S. W. (2006). Chlorophyll c pigments: current status in chlorophylls and bacteriochlorophylls (pp. 39–53). Dordrecht: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Carmo da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, J.C., Lombardi, A.T. (2020). Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_1

Download citation

Publish with us

Policies and ethics