DMC Algorithm with Laguerre Functions

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The paper is concerned with development and analysis of the Dynamic Matrix Control (DMC) discrete-time model predictive control algorithm with parametrisation of the control input trajectories by sets of Laguerre functions. First the appropriate formulation of the algorithm is developed. The main difference between it and the standard DMC formulation is that coefficients of the approximation by the Laguerre functions, instead of control input values, are the decision variables of the DMC optimization problem. Then the proposed DMCL (DMC with Laguerre functions) algorithm is applied to a multivariable benchmark problem to investigate its properties and to provide a concise comparison with the standard DMC algorithm.


Process control Model predictive control DMC algorithm Laguerre functions 


  1. 1.
    Blevins, T.L., McMillan, G.K., Wojsznis, W.K., Brown, M.W.: Advanced Control Unleashed. The ISA Society, Research Triangle Park (2003)Google Scholar
  2. 2.
    Blevins, T.L., Wojsznis, W.K., Nixon, M.: Advanced Control Foundation. The ISA Society, Research Triangle Park (2013)Google Scholar
  3. 3.
    Camacho, E., Bordons, C.: Model Predictive Control. Springer, London (1999)CrossRefGoogle Scholar
  4. 4.
    Ławryńczuk, M.: Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control, vol. 3. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Ławryńczuk, M.: Nonlinear model predictive control for processes with complex dynamics: parametrisation approach using Laguerre functions. Int. J. Appl. Math. Comput. Sci. 30(1), 35–46 (2020)MathSciNetGoogle Scholar
  6. 6.
    Maciejowski, J.: Predictive Control. Prentice Hall, Harlow (2002)zbMATHGoogle Scholar
  7. 7.
    Qin, S., Badgwell, T.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)CrossRefGoogle Scholar
  8. 8.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)Google Scholar
  9. 9.
    Rossiter, J.: Model-Based Predictive Control. CRC Press, Boca Raton (2003)Google Scholar
  10. 10.
    Tatjewski, P.: Advanced Control of Industrial Processes. Springer, London (2007)zbMATHGoogle Scholar
  11. 11.
    Tatjewski, P.: Advanced control and on-line process optimization in multilayer structures. Ann. Rev. Control 32, 71–85 (2008)CrossRefGoogle Scholar
  12. 12.
    Valencia-Palomo, G., Rossiter, J.: Using Laguerre functions to improve efficiency of multi-parametric predictive control. In: Proceedings of the 2010 American Control Conference, Baltimore (2010)Google Scholar
  13. 13.
    Wahlberg, B.: System identification using the Laguerre models. IEEE Trans. Autom. Control 36(5), 551–562 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, L.: Discrete model predictive controller design using Laguerre functions. J. Process Control 14, 131–142 (2004)CrossRefGoogle Scholar
  15. 15.
    Wang, L.: Model Predictive Control System Design and Implementation using MATLAB. Springer, London (2009)Google Scholar
  16. 16.
    Wood, R., Berry, M.: Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28(9), 1707–17 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Computation Engineering, Faculty of Electronics and Information TechnologyWarsaw University of TechnologyWarsawPoland

Personalised recommendations