Skip to main content

Vision-Based Modelling and Control of Small Underwater Vehicles

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1196)

Abstract

Modelling and control of underwater vehicles in most cases, demand their hydrodynamic parameters’ identification, which is a timely and technically demanding task. Therefore, more convenient methods of utilising vision systems have been introduced. However, many solutions presented in the literature assume that a camera is mounted in the central part of a swimming pool. What is more, they are not applicable for trajectory determination, which constitutes an essential factor in devising a control system of autonomous vehicles. For that reason, a computer vision system has been designed and developed, which enables tracking a vehicle and determining its trajectory as well. The obtained results indicate that the developed system enables modelling and control of underwater vehicles under laboratory conditions.

Keywords

  • Mathematical model
  • Underwater vehicle
  • Vision system
  • Trajectory determination

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krupinski, S., Allibert, G., Hua, M.D., Hamel, T.: Pipeline tracking for fully-actuated autonomous underwater vehicle using visual servo control. In: 2012 American Control Conference (ACC), pp. 6196–6202 (2012)

    Google Scholar 

  2. Campos, E., Comby, F., Creuze, V., Torres, J., Antonio, E., Strauss, O.: AUV pipeline following by artificial vision. In: Congreso Internacional de Robotica Computation, pp. 251–256 (2015)

    Google Scholar 

  3. Chen, H.-H.H.: Vision-based tracking with projective mapping for parameter identification of remotely operated vehicles. Ocean Eng. 35, 983–994 (2008). https://doi.org/10.1016/j.oceaneng.2008.03.001

    CrossRef  Google Scholar 

  4. Hozyn, S., Zak, B.: Local image features matching for real-time seabed tracking applications. J. Mar. Eng. Technol. (2017). https://doi.org/10.1080/20464177.2017.1386266

    CrossRef  Google Scholar 

  5. Praczyk, T., Hozyn, S., Bodnar, T., Pietrukaniec, L., Blaszczyk, M., Zablotny, M.: Concept and first results of optical navigational system. Trans. Marit. Sci. 8, 46–53 (2019). https://doi.org/10.7225/toms.v08.n01.005

    CrossRef  Google Scholar 

  6. Hozyn, S., Zak, B.: A concept for application of a stereo vision method in control system of an underwater vehicle. Appl. Mech. Mater. 817, 73–80 (2016). https://doi.org/10.4028/www.scientific.net/AMM.817.73

    CrossRef  Google Scholar 

  7. Szymak, P., Morawski, M., Malec, M.: Conception of research on bionic underwater vehicle with undulating propulsion. Solid State Phenom. 180, 160–167 (2011). https://doi.org/10.4028/www.scientific.net/SSP.180.160

    CrossRef  Google Scholar 

  8. Govinda, L., Salgado-Jimenez, T., Bandala-Sanchez, M., Nava-Balanzar, L., Hernandez-Alvarado, R., Antonio, J.: Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Adv. Robot. Syst. 11, 1 (2014). https://doi.org/10.5772/56810

    CrossRef  Google Scholar 

  9. Praczyk, T., Szymak, P., Naus, K., Pietrukaniec, L., Hozyn, S.: Report on research with biomimetic autonomous underwater vehicle — low level control. Sci. J. Pol. Nav. Acad. 212, 105–123 (2018). https://doi.org/10.2478/sjpna-2018-0006

    CrossRef  Google Scholar 

  10. Praczyk, T., Szymak, P., Naus, K., Pietrukaniec, L., Hozyn, S.: Report on research with biomimetic autonomous underwater vehicle — navigation and autonomous operation. Sci. J. Pol. Nav. Acad. 213, 53–67 (2019). https://doi.org/10.2478/sjpna-2018-0013

    CrossRef  Google Scholar 

  11. Fossen, T.I.: Marine Control Systems?: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002). ISBN 8292356002

    Google Scholar 

  12. Wang, W., Clark, C.M.: Modeling and simulation of the VideoRay Pro III underwater vehicle. In: Ocean. 2006 - Asia Pacific 2007 (2006). https://doi.org/10.1109/oceansap.2006.4393862

  13. Viswanath, P., Mathew, M., Milgram, J., Von Alt, C., Prestero, T.: Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle by in partial fulfillment of the requirements for the degrees of and at the Chairperson, Committee on Graduate Students Verification of a Six-Degree of F. Ocean Sci. pp. 1–9 (2001). https://doi.org/10.1575/1912/3040

  14. Monroy-Anieva, J.A., Rouviere, C., Campos-Mercado, E., Salgado-Jimenez, T., Garcia-Valdovinos, L.G.: Modeling and control of a micro AUV: Objects follower approach. Sensors (Switzerland) 18, 1–18 (2018). https://doi.org/10.3390/s18082574

    CrossRef  Google Scholar 

  15. Miskovic, N., Vukic, Z., Barisic, M.: Identification of coupled mathematical models for underwater vehicles. In: OCEANS 2007 – Europe, pp. 1–6. IEEE (2007)

    Google Scholar 

  16. Miskovic, N., Vukic, Z., Barisic, M.: Identification of unmanned underwater vehicles by self-oscillation method. Automatika 50, 167–183 (2009)

    Google Scholar 

  17. Miskovic, N., Vukic, Z., Barisic, M.: Identification of underwater vehicles for the purpose of autopilot tuning. In: Underwater Vehicles, pp. 582–601. InTech, Vienna (2008). ISBN 9789537619497

    Google Scholar 

  18. Hozyn, S., Zak, B.: Distance measurement using a stereo vision system. Solid State Phenom. 196, 189–197 (2013). https://doi.org/10.4028/www.scientific.net/SSP.196.189

    CrossRef  Google Scholar 

  19. Shortis, M.: Calibration techniques for accurate measurements by underwater camera systems. Sensors 15, 30810–30826 (2015). https://doi.org/10.3390/s151229831

    CrossRef  Google Scholar 

  20. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2002). https://doi.org/10.1109/34.888718

    CrossRef  Google Scholar 

  21. Silvatti, A.P., Salve Dias, F.A., Cerveri, P., Barros, R.M.L.: Comparison of different camera calibration approaches for underwater applications. J. Biomech. 45, 1112–1116 (2012). https://doi.org/10.1016/j.jbiomech.2012.01.004

    CrossRef  Google Scholar 

  22. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, vol. 16. Australian National University, Canberra (2003)

    MATH  Google Scholar 

  23. Romanuke, V.V.: Interval uncertainty reduction via division-by-2 dichotomization based on expert estimations for short-termed observations. J. Uncertain Syst. 12, 3–21 (2018)

    Google Scholar 

Download references

Acknowledgement

The paper is supported by Project No. DOBR-BIO4/033/13015/2013, entitled “Autonomous underwater vehicles with silent undulating propulsion for underwater reconnaissance” financed by Polish National Centre of Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Hożyń .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hożyń, S. (2020). Vision-Based Modelling and Control of Small Underwater Vehicles. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_129

Download citation