Skip to main content

Greenland Ice Sheet and Arctic Mountain Glaciers

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

This chapter provides a review and update of meltwater and Arctic hydrology, and the impact of glacier and ice sheet mass balance contributions to sea-level rise and ocean circulation. It highlights the recent work and results of large-scale modeling of Greenland climate, glaciers, and ice caps and Greenland Ice Sheet (GrIS) mass balances, and Greenland spatiotemporal freshwater runoff to the surrounding oceans and seas (spatiotemporal runoff simulations based on SnowModel/HydroFlow generated individual drainage catchments for Greenland (n = 3,150), each with an individual flow network). The mass balance for the GrIS was close to equilibrium during the relatively cold 1970s and 1980s and lost mass rapidly as the climate warmed in the 1990s and 2000s. Since 2003, the average annual GrIS mass loss rate was 250–300 km3 yr−1 (equal to 250–300 Gt yr−1). This represents a GrIS loss rate equivalent to a eustatic sea-level rise contribution of 1.1 mm SLE yr−1, compared to a mean estimated global sea-level rise of 3.3 ± 0.4 mm SLE yr−1 from 1993 to 2009, and an average 4.8 mm SLE yr−1 for 2013–2018. Not only has the GrIS lost mass, the land- and marine-terminating outlet glaciers on the periphery of the GrIS have undergone rapid mass and area changes over the recent decades. For example, for the last decade (2000–2010) the average simulated Greenland runoff was 572 ± 53 km3 yr−1 (1.6 ± 0.2 mm SLE yr−1), where the simulations indicated that 69% of the runoff to the surrounding seas originated from the GrIS and 31% came from the land area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AMAP (2011) Snow, water, ice, and permafrost in the arctic (SWIPA): climate change and the cryosphere. Arctic monitoring and assessment programme (AMAP). Oslo. Norway. Xii+538 pp

    Google Scholar 

  • AMAP (2017) Snow, water, ice and permafrost in the arctic (SWIPA) 2017. Arctic monitoring and assessment programme (AMAP), Oslo, Norway. xiv+269 pp

    Google Scholar 

  • Bamber, J. L., Steig, E., and Dahl-Jensen, D. 2009. What is the tipping point for the Greenland Ice Sheet. C15, Nuuk Climate Days, Changes of the Greenland Cryosphere Workshop & The Arctic Freshwater Budget International Symposium. Nuuk, Greenland, 25–27 August 2009

    Google Scholar 

  • Box JE, Bromwich DH, Veenhuis BA, Bai L-S, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S-H (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J Clim 19:2783–2800

    Article  Google Scholar 

  • Box JE, Colgan W (2013) Greenland Ice sheet mass balance reconstruction. Part III: Marine ice loss and total mass balance (1840–2010). J Clim 26:6990–7002

    Article  Google Scholar 

  • Box J, Colgan W, Bert, Wouters B, Burgess D, O’Neel S, Thomson L, Mernild SH (2018) Global sea-level contribution from arctic land ice: 1971 to 2017. Accepted Environ Res Lett

    Google Scholar 

  • Box JE, Decker DT (2011) Greenland marine-terminating glacier area changes: 2000–2010. Ann Glaciol 52:91–98

    Article  Google Scholar 

  • Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657

    Article  Google Scholar 

  • Cappelen J (ed) (2013) Weather and climate data from Greenland 1958–2012—observation data with description. DMI Technical Report 13-11, Copenhagen, 23.

    Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary Sea Level Rise. Ann Rev Mar Sci 2:145–173. https://doi.org/10.1146/annurev-marine-120308-081105

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Chylek P, Folland CK, Lesins G, Dubey MK (2010) Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys Res Lett 37:L08703. https://doi.org/10.1029/2010GL042793

    Article  Google Scholar 

  • Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:L14801. https://doi.org/10.1029/2009GL038777

    Article  Google Scholar 

  • Cogley JG (2012) The future of the world’s glaciers. In: Henderson-Sellers A, McGuffie K (eds) The future of the world’s climate, 197–222. Elsevier, Amsterdam

    Google Scholar 

  • Cuffey KM, Paterson WSB (2010) The physics of glaciers. Fourth Edition. Elsevier, pp 693

    Google Scholar 

  • Dickson B, Yashayaey I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • Dyurgerov MB (2010) Data of glaciological studies—Reanalysis of glacier changes: From the IGY to the IPY, 1960–2008. Publication 108, Institute of Arctic and Alpine Research, 116 pp

    Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot, occas. Paper 58, 117 pp. Institute of Arctic and Alpine Research, Boulder, Colorado

    Google Scholar 

  • Enderlin EM, Howat IM, Jeong S, Hoh M-J, van Angelen JH, van den Broeke MR (2014) An improved mass budget for the Greenland ice sheet. Geophys Res Lett 41(3):866–872

    Article  Google Scholar 

  • Ettema J, van den Broeke MR, van Meijgaard E, van den Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L125

    Article  Google Scholar 

  • Fettweis X (2007) Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The Cryosphere 1:21–40

    Article  Google Scholar 

  • Fettweis X, Hanna E, Gallee H, Huybrechts P, Erpicum M (2008) Estimation of the Greenland ice sheet surface mass balance during 20th and 21st centuries. The Cryosphere 2:117–129

    Article  Google Scholar 

  • Fettweis X, Tedesco M, van den Broeke MR, Ettema J (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere 5:359–375

    Article  Google Scholar 

  • Folland CK, Palmer T, Parker DE (1986) Sahel rainfall and worldwide sea temperatures. Nature 320:602–607

    Google Scholar 

  • Gardner AS, Moholdt G, Wouters B, Wolken GJ, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473(7347):357–360

    Article  Google Scholar 

  • Hall DK, Comiso JC, DiGirolamo NE, Shuman CA, Box JE, Koenig LS (2013) Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys Res Lett 40(10):2120–2144

    Google Scholar 

  • Hanna E, Fettweis X, Mernild SH, Cappelen J, Ribergaard M, Shuman C, Steffen K, Wood L, Mote T (2014) Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int J Climatol 34:1022–1037. https://doi.org/10.1002/joc.3743

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110:D13108

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, Irvine-Fynn T, Wise S, Griffiths M (2008) Increased runoff from melt from the Greenland ice sheet: a response to global warming. J Clim 21:331–341

    Article  Google Scholar 

  • Hanna E, Mernild SH, Cappelen J, Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context. Part 1: Evaluation of surface air temperature records. Environ Res Lett 7:045404

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Google Scholar 

  • Hasholt B, Mernild SH (2006) Glacial erosion and sediment transport in the Mittivakkat Glacier catchment, Ammassalik island, southeast Greenland, 2005. IAHS 306:45–55

    Google Scholar 

  • Hock R, Jansson P (2005) Modeling glacier hydrology. Anderson MG, McDonnell J (eds), Enzyclopedia of Hydrologcial Sciences, vol 4. John Wiley & Sons, Ltd, pp 2647–2655

    Google Scholar 

  • Howat IM, Eddy A (2011) Multi-decadal retreat of Greenland’s marine-terminating glaciers. J Glaciol 57:389–396

    Article  Google Scholar 

  • Joughin I, 7 others (2008) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res 113(F4):F04006. https://doi.org/10.1029/2008JF001023

  • Keegan KM, Albert MR, McConnell JR, Baker I (2014) Climate change and forrest fires synergistically drive widesperad melt events of the Greenland Ice Sheet. Proc Nat Acad Sci 111(22):7964–7967

    Article  Google Scholar 

  • Kargel JS, Ahlstrøm AP, Alley RB, Bamber JL, Benham TJ, Box JE, Chen C, Christoffersen P, Citterio M, Cogley JG, Jiskoot H, Leonard GJ, Morin P, Scambos T, Sheldon T, Willis I (2011) Brief communication Greenland’s shrinking ice cover: “fast times” but not that fast. The Cryosphere 6:533–537. https://doi.org/10.5194/tc-6-533-2012

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985

    Article  Google Scholar 

  • Lewis SM, Smith LC (2009) Hydrological drainage of the Greenland ice sheet. Hydrol Process 23:2004–2011. https://doi.org/10.1002/hyp.7343

    Article  Google Scholar 

  • Liston GE, Elder K (2006a) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7:1259–1276

    Article  Google Scholar 

  • Liston GE, Elder K (2006b) A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J Hydrometeorol 7:217–234

    Article  Google Scholar 

  • Liston GE, Hiemstra CA (2011) The changing cryosphere: Pan-Arctic snow trends (1979–2009). J Clim 24:5691–5712

    Article  Google Scholar 

  • Machguth, M., Box, J. E., Fausto, R. S., and Pfeffer, W. T. 2018. Editorial: Melt Water Retention Processes in Snow and Firn on Ice Sheets and Glaciers: Observations and Modeling. Front. Earth Sci., doi.org/10.3389/feart.2018.00105

    Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064–1067

    Article  Google Scholar 

  • Mernild SH, Holland DM, Holland D, Rosing-Asvid A, Yde JC, Liston GE, Steffen K (2015a) Freshwater flux and spatiotemporal simulated runoff variability into Ilulissat Icefjord, West Greenland, linked to salinity and temperature observations near tidewater glacier margins obtained using instrumented ringed seals. J Phys Oceanogr 45(5):1426–1445. https://doi.org/10.1175/JPO-D-14-0217.1

    Article  Google Scholar 

  • Mernild SH, Knudsen NT, Lipscomb WH, Yde JC, Malmros JK, Jakobsen BH, Hasholt B (2011a) Increasing mass loss from Greenland’s Mittivakkat Gletscher. The Cryosphere 5:341–348. https://doi.org/10.5194/tc-5-341-2011

    Article  Google Scholar 

  • Mernild SH, Lipscomb WH, Bahr DB, Radić V, Zemp M (2013) Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. The Cryosphere 7:1565–1577

    Article  Google Scholar 

  • Mernild SH, Liston GE (2012) Greenland freshwater runoff. Part II: Distribution and trends, 1960–2010. J Clim 25(17):6015–6035

    Google Scholar 

  • Mernild SH, Liston GE, Hasholt B, Knudsen NT (2006) Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, Southeast Greenland. J Hydrometeorol 7:808–824

    Article  Google Scholar 

  • Mernild SH, Mote TL, Liston GE (2011b) Greenland ice sheet surface melt extent and trends, 1960–2010. J Glaciol 57(204):621–628. https://doi.org/10.3189/002214311797409712

    Article  Google Scholar 

  • Mernild SH, Malmros JK, Yde JC, de Villiers S, Wilson R, Hanna E, Knudsen NT (2015) Glacier changes in the circumpolar Arctic and sub-Arctic, mid-1980s to late-2000s/2011. Geografisk Tidsskrift – Danish J Geogr 115(1):39–56. https://doi.org/10.1080/00167223.2015.1026917

  • Mote TL (2007) Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys Res Lett 34(22):L22507. https://doi.org/10.1029/2007gl031976

  • Nghiem S, Hall D, Mote T, Tedesco M, Albert M, Keegan K, DiGirolamo N (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett 39:L20502. https://doi.org/10.1029/2012GL053611

    Article  Google Scholar 

  • Nick FM, Vieli A, Howat IM, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2(2):110–114

    Article  Google Scholar 

  • Pattyn F, Ritz C, Hanna E, Asay-Davis X, DeConto R, Durand G, Favier L, Fettweis X, Goelzer H, Golledge NR, Munneke PK, Lenaerts JTM, Nowicki S, Payne AJ, Robinson A, Seroussi H, Trusel LD, van den Broeke M (2018) The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat Clim Change 1–9.https://doi.org/10.1038/s41558-018-0305-8

  • Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010. https://doi.org/10.1029/2009JF001373

    Article  Google Scholar 

  • Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94

    Article  Google Scholar 

  • Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149

    Article  Google Scholar 

  • Rahmstorf S, Coauthors (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. https://doi.org/10.1029/2005GL023655

  • Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198:69–97

    Article  Google Scholar 

  • Reimer CH, van den Broeke M, Ettema J, Stap LB (2012) Refreezing on the Greenland ice sheet: a comparison of parameterizations. The Cryosphere 6(4):743–762. https://doi.org/10.5194/tc-6-743-2012

    Article  Google Scholar 

  • Rignot E, Box JE, Burgess E, Hanna E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys Res Lett 35:L20502.

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723

    Article  Google Scholar 

  • Straneo F, Heimbach P, Sergienko O, Hamilton G, Catania G, Griffies S, Hallberg R, Jenkins A, Joughin I, Motyka R, Pfeffer WT, Price SF, Rignot E, Scambos T, Truffer M, Veili A (2013) Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. BAMS 8:1131–1144. https://doi.org/10.1175/BAMS-D-12-00100.1

    Article  Google Scholar 

  • Steffen K (1995) Surface energy exchange at the equilibrium line on the Greenland ice sheet during onset of melt. Ann Glaciol 21:13–18

    Article  Google Scholar 

  • Steffen K, 6 others (2008) Rapid changes in glaciers and ice sheets and their impacts on sea level. In: Abrupt climate change. Reston, VA, US Geological Survey, 29–66. (US Climate Change Science Program: Synthesis and Assessment Product 3.4.)

    Google Scholar 

  • Tedesco M, Box JE, Cappelen J, Fausto RS, Fettweis X, Hansen K, Mote T, Sasgen I, Smeets CJPP, van As D, van de Wal RSW, Velicogna I (2017) Greenland ice sheet. Arctic Report Card 2017. https://www.arctic.noaa.gov/Report-Card

  • Tedesco M, 7 others (2011) The role of albedo and accumulation in the 2010 melting record in Greenland. Environ Res Lett 6:014005. https://doi.org/10.1088/1748-9326/6/1/014005

  • van den Broeke MR, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986

    Article  Google Scholar 

  • van de Wal RSW, Boot W, van den Broeke MR, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemans J (2008) Large and rapid velocity changes in the ablation zone of the Greenland ice sheet. Science 321:111–113

    Article  Google Scholar 

  • Weijer W, Maltrud ME, Hecht MW, Dijkstra HA, Kliphuis MA (2012) Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys Res Lett 39:L09606

    Article  Google Scholar 

  • World Glacier Monitoring Service (WGMS) 2013. Glacier mass balance bulletin 2010–2011 (Bulletin No 12) Zemp M, Nussbaumer SU, Naegeli K, Gärtner-Roer I, Paul F, Hoelzle M, Haeberli W, ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, Zurich, Switzerland, 106 pp, Publication based on database version. https://doi.org/10.5904/wgms-fog-2013-11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian H. Mernild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mernild, S.H., Liston, G.E., Yang, D. (2021). Greenland Ice Sheet and Arctic Mountain Glaciers. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_5

Download citation

Publish with us

Policies and ethics