Skip to main content

High-Resolution Weather Research Forecasting (WRF) Modeling and Projection Over Western Canada, Including Mackenzie Watershed

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

Weather Research Forecasting (WRF) model was run at a Convection-Permitting (CP) 4-km resolution to dynamically downscale the 19-member CMIP5 ensemble mean projection to assess the hydroclimatic risks in Western Canada under high-end emission scenario RCP8.5 by the end of twenty-first century. A retrospective simulation (CTL, 2000–2015) forced by ERA-Interim and a Pseudo-Global Warming (PGW) forced with the reanalysis plus the climate change forcing (2071-2100–1976-2005) were derived using CMIP5 ensemble. The surface air temperature of WRF-CTL, evaluated against gridded analysis ANUSPLIN, shows good agreements in the geographical distribution. There are cold biases east of the Canadian Rockies, especially in spring. WRF-CTL’s precipitation resembles the geographical distribution of CaPA and ANUSPLIN. The wet bias mainly resides near the British Columbia coast in winter and over on the eastern side of the Canadian Rockies in summer. WRF-PGW shows much larger warming over the polar region in the northeast during the cold season relative to WRF-CTL. Precipitation increases in most areas in spring and autumn, whereas unchanged or decreased precipitation in summer occurs in the Saskatchewan River Basin and southern Canadian Prairies. The flat precipitation changes cannot compensate the enhanced evapotranspiration over the region causing the water stress for the rain-fed agriculture during the growing season in the future. WRF-PGW projects lower warming than that by the CMIP5 ensemble throughout the year. The CMIP5 ensemble projects a much drier future over the Canadian Prairies with a 10–20% decrease of summer precipitation. The CMIP5 ensemble mean generally agrees with WRF-PGW except for regions with significant terrain, which may be due to WRF’s higher resolution can represent small-scale summer convection and orographic lifting better. A larger increase of high-intensity precipitation events compared to lower intensity events, which indicates a higher risk for extreme events and lower effective rainfall for agriculture. New bias correction methods need to be developed to capture the shift in the precipitation intensity distribution in the future. The study also reveals the urgent need for high-quality meteorological observation to provide forcing data and evaluation benchmarks in Western Canada. The high-resolution dynamical downscaling over Western Canada provides opportunities for studying local-scale atmospheric dynamics and providing hydroclimatic data for cold region ecosystems, agriculture, and hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bindoff N, Stott P, Achuta Rao K, Allen M, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional, in climate change 2013: the physical science basis. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA, pp 867–952

    Google Scholar 

  • Casati B, de Elía R (2014) Temperature extremes from Canadian regional climate model (CRCM) climate change projections. Atmos Ocean 52(3):191–210. https://doi.org/10.1080/07055900.2014.886179

    Article  Google Scholar 

  • Castro CL (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (rams). J Geophys Res 110(D5):D05108. https://doi.org/10.1029/2004jd004721

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585. 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

    Google Scholar 

  • Collins WD, Rasch P, Boville B, Hack J, McCaa J, Williamson D, Kiehl J, Briegleb B, Bitz C, Lin S-J, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (cam 3.0). In: Natational Centre for Atmospheric Research, Boulder, Colorado

    Google Scholar 

  • Cubasch U, Wuebbles D, Chen D, Facchini M, Frame D, Mahowald N, Winther J-G (2013) Introduction. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA, pp 119–158

    Google Scholar 

  • Dai A, Rasmussen RM, Liu C, Ikeda K, Prein AF (2017) A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim Dyn. https://doi.org/10.1007/s00382-017-3787-6

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Royal Meteorolog Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science289:5487, 2068–74

    Google Scholar 

  • Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteor Soc 92(9):1181–1192. https://doi.org/10.1175/2011bams3061.1

    Article  Google Scholar 

  • Fortin V, Roy G, Stadnyk T, Koenig K, Gasset N, Mahidjiba A (2018) Ten years of science based on the Canadian precipitation analysis: a CaPA system overview and literature review. Atmos Ocean 56(3):178–196. https://doi.org/10.1080/07055900.2018.1474728

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the cordex framework. WMO Bull 58(3):175

    Google Scholar 

  • Hofstra N, New M, McSweeney C (2009) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35(5):841–858. https://doi.org/10.1007/s00382-009-0698-1

    Article  Google Scholar 

  • Hopkinson RF, McKenney DW, Milewska EJ, Hutchinson MF, Papadopol P, Vincent LA (2011) Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over canada. J Appl Meteorol Climatol 50(8):1654–1665. https://doi.org/10.1175/2011jamc2684.1

    Article  Google Scholar 

  • Hutchinson MF, McKenney DW, Lawrence K, Pedlar JH, Hopkinson RF, Milewska E, Papadopol P (2009) Development and testing of canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003. J Appl Meteorol Climatol 48(4):725–741. https://doi.org/10.1175/2008jamc1979.1

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Book, Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA

    Google Scholar 

  • Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple A, Murray W (2006) Weather and climate extremes in a changing cimate. Regions of focus, North America, Hawaii, Caribbean, and U.S. Pacific islands

    Google Scholar 

  • Kurkute S, Li Z, Li Y, Huo F (2019) Assessment and projection of water budget over western canada using convection permitting WRF simulations. Hydrol Earth Syst Sci Dis 1–32:2019. https://doi.org/10.5194/hess-2019-522

    Article  Google Scholar 

  • Li Y, Szeto K, Stewart RE, Thériault JM, Chen L, Kochtubajda B, Liu A, Boodoo S, Goodson R, Mooney C, Kurkute S (2017) A numerical study of the june 2013 flood-producing extreme rainstorm over southern Alberta. J Hydrometeor 18:2057–2078. https://doi.org/10.1175/JHM-D-15-0176.1

  • Li Y, Li Z, Zhang Z, Chen L, Kurkute S, Scaff L, Pan X (2019) High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrol Earth Syst Sci 23:4635–4659. https://doi.org/10.5194/hess-23-4635-2019

    Article  Google Scholar 

  • Liu C, Ikeda K, Thompson G, Rasmussen R, Dudhia J (2011) High-resolution simulations of wintertime precipitation in the colorado headwaters region: sensitivity to physics parameterizations, Month Weather Rev 139(11):3533–3553. http://dx.doi.org/10.1175/MWR-D-11-00009.1

  • Liu C, Ikeda K, Rasmussen R, Barlage M, Newman AJ, Prein AF, Chen F, Chen L, Clark M, Dai A, Dudhia J, Eidhammer T, Gochis D, Gutmann E, Kurkute S, Li Y, Thompson G, Yates D (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49(1):71–95. https://doi.org/10.1007/s00382-016-3327-9

    Article  Google Scholar 

  • Mahfouf J-F, Brasnett B, Gagnon S (2007) A Canadian precipitation analysis (CaPA) project: description and preliminary results. Atmos-Ocean 45(1), 1–17. https://doi.org/10.3137/ao.450101

  • Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Snyder M, Jones RG, Nunes AMB, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American regional climate change assessment program (narccap). Clim Change 120(4):965–975. https://doi.org/10.1007/s10584-013-0831-3

    Article  Google Scholar 

  • Mearns LO, Lettenmaier DP, McGinnis S (2015) Uses of results of regional climate model experiments for impacts and adaptation studies: the example of NARCCAP. Curr Clim Change Rep 1(1):1–9. https://doi.org/10.1007/s40641-015-0004-8

    Article  Google Scholar 

  • Meng X, Lyu S, Zhang T, Zhao L, Li Z, Han B, Li S, Ma D, Chen H, Ao Y, Luo S, Shen Y, Guo J, Wen L (2018) Simulated cold bias being improved by using modis time-varying albedo in the tibetan plateau in WRF model. Environ Res Lett. 13(4):044028. http://stacks.iop.org/1748-9326/13/i=4/a=044028

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360. https://doi.org/10.1175/bams-87-3-343

  • Misra V, Kanamitsu M (2004) Anomaly nesting: a methodology to downscale seasonal climate simulations from agcms. J Clim 17(17):3249–3262. http://dx.doi.org/10.1175/1520-0442(2004)017$<$3249:anamtd>2.0.co;2

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Month Weather Rev 137(3):991–1007. http://dx.doi.org/10.1175/2008mwr2556.1

  • Musselman KN, Lehner F, Ikeda K, Clark MP, Prein AF, Liu C, Barlage M, Rasmussen R (2018) Projected increases and shifts in rain-on-snow flood risk over western North America. Nat Clim Change 8(9):808–812. https://doi.org/10.1038/s41558-018-0236-4

    Article  Google Scholar 

  • Nelson BR, Prat OP, Seo D, Habib E (2016) Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons. Weather Forecast 31:371–394. https://doi.org/10.1175/WAF-D-14-00112.1

  • Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48–52. https://doi.org/10.1038/nclimate3168

    Article  Google Scholar 

  • Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M, Yates D, Zhang G (2014) Climate change impacts on the water balance of the colorado headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15(3):1091–1116. https://doi.org/10.1175/jhm-d-13-0118.1

    Article  Google Scholar 

  • Rasmussen KL, Prein AF, Rasmussen RM, Ikeda K, Liu C (2017) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the united states. Clim Dynamic. http://dx.doi.org/10.1007/s00382-017-4000-7

  • Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over mongolia using a regional climate model. J Hydrol 333(1):144–154. http://dx.doi.org/10.1016/j.jhydrol.2006.07.023

  • Stralberg D, Wang X, Parisien M-A, Robinne F-N, Sólymos P, Mahon CL, Nielsen SE, Bayne EM (2018) Wildfire-mediated vegetation change in boreal forests of alberta, canada. Ecosphere 9(3):e02156. https://doi.org/10.1002/ecs2.2156

    Article  Google Scholar 

  • Sugiyama M, Shiogama H, Emori S (2009) Precipitation extreme changes exceeding moisture content increases in miroc and IPCC climate models. Proc Natl Acad Sci 107(2):571–575. https://doi.org/10.1073/pnas.0903186107

    Article  Google Scholar 

  • Takhsha M, Nikiéma O, Lucas-Picher P, Laprise R, Hernández-Díaz L, Winger K (2017) Dynamical downscaling with the fifth-generation Canadian regional climate model (crcm5) over the cordex arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature. Clim Dyn. https://doi.org/10.1007/s00382-017-3912-6

    Article  Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115. https://doi.org/10.1175/2008mwr2387.1

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52(3):522–555. https://doi.org/10.1002/2014rg000464

    Article  Google Scholar 

  • Wong JS, Razavi S, Bonsal BR, Wheater HS, Asong ZE (2017) Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol Earth Syst Sci 21(4):2163–2185. https://doi.org/10.5194/hess-21-2163-2017

    Article  Google Scholar 

  • Xu T, Hutchinson MF (2013) New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ Modell Softw 40:267–279. https://doi.org/10.1016/j.envsoft.2012.10.003

Download references

Acknowledgments

The research described in this chapter is funded by Changing Cold Region Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Li, Z. (2021). High-Resolution Weather Research Forecasting (WRF) Modeling and Projection Over Western Canada, Including Mackenzie Watershed. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_28

Download citation

Publish with us

Policies and ethics